Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Enzymol ; 583: 255-278, 2017.
Article in English | MEDLINE | ID: mdl-28063494

ABSTRACT

The access to kinetic parameters of lipolytic enzyme adsorption onto lipids is essential for a better understanding of the overall catalytic process carried out by these interfacial enzymes. Gastric lipase, for instance, shows an apparent optimum activity on triglycerides (TAG) at acidic pH, which is controlled by its pH-dependent adsorption at lipid-water interfaces. Since gastric lipase acts on TAG droplets covered by phospholipids, but does not hydrolyze these lipids, phospholipid monolayers spread at the air-water interfaces can be used as biomimetic interfaces to study lipase adsorption and penetration through the phospholipid layer, independently from the catalytic activity. The adsorption of recombinant dog gastric lipase (rDGL) onto 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) monolayers can be monitored by surface tensiometry at various enzyme concentrations, pHs, and surface pressures (Π). These experimental data and the use of Langmuir adsorption isotherm and Verger-de Haas' lipase kinetics models further allow estimating various parameters including the adsorption equilibrium constant (KAds), the interfacial concentration [Formula: see text] , the molar fraction [Formula: see text] (ΦE*(%), mol%), and the molecular area [Formula: see text] of rDGL adsorbed onto the DLPC monolayer under various conditions. Additional insight into rDGL adsorption/insertion on phospholipid monolayers can be obtained by combining ellipsometry, Langmuir-Blodgett film transfer, and atomic force microscopy. When using multicomponent phospholipid monolayers with phase separation, these techniques allow to visualizing how rDGL preferentially partitions toward liquid expanded phase and at phase boundaries, gets adsorbed at various levels of insertion and impacts on the lateral organization of lipids.


Subject(s)
Lipase/chemistry , Phosphatidylcholines/chemistry , Triglycerides/chemistry , Water/chemistry , Adsorption , Animals , Dogs , Hydrogen-Ion Concentration , Kinetics , Lipase/isolation & purification , Microscopy, Atomic Force , Models, Molecular , Protein Domains , Protein Structure, Secondary , Stomach/chemistry , Stomach/enzymology , Surface Properties , Tensile Strength
2.
Biochim Biophys Acta ; 1861(9 Pt A): 1111-1120, 2016 09.
Article in English | MEDLINE | ID: mdl-27317984

ABSTRACT

Part of medium chain fatty acids (MCFAs) coming from dietary triglycerides (TGs) can be directly absorbed through the gastric mucosa after the action of preduodenal lipase (lingual lipase in the rat). MCFA gastric absorption, particularly that of octanoic acid (C8:0), may have a physiological importance in the octanoylation of ghrelin, the orexigenic gastric peptide acting as an endogenous ligand of the hypothalamic growth hormone secretagogue receptor 1a (GHSR-1a). However, the amount of C8:0 absorbed in the stomach and its metabolic fate still haven't been clearly characterized. The purpose of the present study was to further characterize and quantify the importance of preduodenal lipase activity on the release and gastric absorption of dietary C8:0 and on the subsequent ghrelin octanoylation in the stomach mucosa. Fifteen days old rats received fat emulsions containing triolein or [1,1,1-(13)C]-Tri-C8:0 and a specific inhibitor of preduodenal lipase, 5-(2-(benzyloxy)ethoxy)-3-(3-phenoxyphenyl)-1,3,4-oxadiazol-2(3H)-one or BemPPOX. The fate of the (13)C-C8:0 was followed in rat tissues after 30 and 120min of digestion and octanoylated ghrelin was measured in the plasma. This work (1) demonstrates that part of C8:0 coming from Tri-C8:0 is directly absorbed at the gastric level, (2) allows the estimation of C8:0 gastric absorption level (1.3% of the (13)C-C8:0 in sn-3 position after 30min of digestion), as well as (3) the contribution of rat lingual lipase to total lipolysis and to duodenal absorption of dietary FAs (at least 30%), (4) shows no short-term effect of dietary Tri-C8:0 consumption and subsequent increase of C8:0 gastric tissue content on plasma octanoylated ghrelin concentration.


Subject(s)
Caprylates/blood , Fatty Acids/metabolism , Ghrelin/blood , Lipase/antagonists & inhibitors , Animals , Caprylates/administration & dosage , Gastric Absorption/drug effects , Gastric Absorption/genetics , Gastric Mucosa/metabolism , Lipase/blood , Lipolysis/drug effects , Rats , Triglycerides/administration & dosage
3.
Environ Pollut ; 144(1): 255-65, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16487636

ABSTRACT

Oily drill cuttings and a soil contaminated with weathered crude oils were treated by enhanced biodegradation under tropical conditions in industrial scaled experiments. Oil contaminants were characterized by gas chromatography and mass spectrometry. This allowed for the identification of a mixture of two crude oils in the contaminated soil. After 12 months of bioremediation process, the removal of hydrocarbons reached by biodegradation an extent of 60% although nutrient amendment with elevated concentration of N-urea had highly detrimental effects on the hydrocarbon degrading fungal populations due to the production of toxic concentration of ammonia gas by nitrification. The saturated hydrocarbons were extensively assimilated, though n-alkanes were not completely removed. Aromatic hydrocarbons were less degraded than saturated whereas resin and asphaltene fractions were, surprisingly, partly assimilated. In laboratory conditions, the residual hydrocarbons in the field-treated materials were 15-20% further degraded when metabolic byproducts resulting from biodegradation were diluted or removed.


Subject(s)
Environmental Pollution , Extraction and Processing Industry , Fuel Oils , Industrial Waste , Biodegradation, Environmental , Environmental Monitoring/methods , France , Fuel Oils/analysis , Gas Chromatography-Mass Spectrometry , Soil Microbiology , Soil Pollutants/analysis , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...