Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Brain ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884572

ABSTRACT

Alpha-tubulin 4A encoding gene (TUBA4A) has been associated with familial amyotrophic lateral sclerosis (fALS) and fronto-temporal dementia (FTD), based on identification of likely pathogenic variants in patients from distinct ALS and FTD cohorts. By screening a multicentric French cohort of 448 unrelated probands presenting with cerebellar ataxia, we identified ultra-rare TUBA4A missense variants, all being absent from public databases and predicted pathogenic by multiple in-silico tools. In addition, gene burden analyses in the 100,000 genomes project (100KGP) showed enrichment of TUBA4A rare variants in the inherited ataxia group compared to controls (OR: 57.0847 [10.2- 576.7]; p = 4.02 x10-07). Altogether, we report 12 patients presenting with spasticity and/or cerebellar ataxia and harboring a predicted pathogenic TUBA4A missense mutation, including 5 confirmed de novo cases and a mutation previously reported in a large family presenting with spastic ataxia. Cultured fibroblasts from 3 patients harboring distinct TUBA4A missense showed significant alterations in microtubule organisation and dynamics, providing insight of TUBA4A variants pathogenicity. Our data confirm the identification of a hereditary spastic ataxia disease gene with variable age of onset, expanding the clinical spectrum of TUBA4A associated phenotypes.

2.
Brain ; 145(11): 3770-3775, 2022 11 21.
Article in English | MEDLINE | ID: mdl-35883251

ABSTRACT

Cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) is an inherited late-onset neurological disease caused by bi-allelic AAGGG pentanucleotide expansions within intron 2 of RFC1. Despite extensive studies, the pathophysiological mechanism of these intronic expansions remains elusive. We screened by clinical exome sequencing two unrelated patients presenting with late-onset ataxia. A repeat-primer polymerase chain reaction was used for RFC1 AAGGG intronic expansion identification. RFC1 mRNA expression was assessed by quantitative reverse transcription-polymerase chain reaction. We identified the first two CANVAS affected patients who are compound heterozygous for RFC1 truncating variants (p.Arg388* and c.575delA, respectively) and a pathological AAGGG expansion. RFC1 expression studies in whole blood showed a significant reduction of RFC1 mRNA for both patients compared to three patients with bi-allelic RFC1 expansions. In conclusion, this observation provides clues that suggest bi-allelic RFC1 conditional loss-of-function as the cause of the disease.


Subject(s)
Bilateral Vestibulopathy , Cerebellar Ataxia , Peripheral Nervous System Diseases , Replication Protein C , Humans , Bilateral Vestibulopathy/complications , Cerebellar Ataxia/genetics , Peripheral Nervous System Diseases/complications , Peripheral Nervous System Diseases/genetics , Reflex, Abnormal , RNA, Messenger/genetics , Syndrome , Replication Protein C/genetics
3.
Genet Med ; 23(11): 2160-2170, 2021 11.
Article in English | MEDLINE | ID: mdl-34234304

ABSTRACT

PURPOSE: Diagnosis of inherited ataxia and related diseases represents a real challenge given the tremendous heterogeneity and clinical overlap of the various causes. We evaluated the efficacy of molecular diagnosis of these diseases by sequencing a large cohort of undiagnosed families. METHODS: We analyzed 366 unrelated consecutive patients with undiagnosed ataxia or related disorders by clinical exome-capture sequencing. In silico analysis was performed with an in-house pipeline that combines variant ranking and copy-number variant (CNV) searches. Variants were interpreted according to American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines. RESULTS: We established the molecular diagnosis in 46% of the cases. We identified 35 mildly affected patients with causative variants in genes that are classically associated with severe presentations. These cases were explained by the occurrence of hypomorphic variants, but also rarely suspected mechanisms such as C-terminal truncations and translation reinitiation. CONCLUSION: A significant fraction of the clinical heterogeneity and phenotypic overlap is explained by hypomorphic variants that are difficult to identify and not readily predicted. The hypomorphic C-terminal truncation and translation reinitiation mechanisms that we identified may only apply to few genes, as it relies on specific domain organization and alterations. We identified PEX10 and FASTKD2 as candidates for translation reinitiation accounting for mild disease presentation.


Subject(s)
Cerebellar Ataxia , Genomics , Cohort Studies , DNA Copy Number Variations/genetics , Humans , Peroxins , Receptors, Cytoplasmic and Nuclear , United States , Exome Sequencing
4.
J Neurol ; 268(5): 1927-1937, 2021 May.
Article in English | MEDLINE | ID: mdl-33417001

ABSTRACT

BACKGROUND: STUB1 has been first associated with autosomal recessive (SCAR16, MIM# 615768) and later with dominant forms of ataxia (SCA48, MIM# 618093). Pathogenic variations in STUB1 are now considered a frequent cause of cerebellar ataxia. OBJECTIVE: We aimed to improve the clinical, radiological, and molecular delineation of SCAR16 and SCA48. METHODS: Retrospective collection of patients with SCAR16 or SCA48 diagnosed in three French genetic centers (Montpellier, Strasbourg and Nancy). RESULTS: Here, we report four SCAR16 and nine SCA48 patients from two SCAR16 and five SCA48 unrelated French families. All presented with slowly progressive cerebellar ataxia. Additional findings included cognitive decline, dystonia, parkinsonism and swallowing difficulties. The age at onset was highly variable, ranging from 14 to 76 years. Brain MRI showed marked cerebellar atrophy in all patients. Phenotypic findings associated with STUB1 pathogenic variations cover a broad spectrum, ranging from isolated slowly progressive ataxia to severe encephalopathy, and include extrapyramidal features. We described five new pathogenic variations, two previously reported pathogenic variations, and two rare variants of unknown significance in association with STUB1-related disorders. We also report the first pathogenic variation associated with both dominant and recessive forms of inheritance (SCAR16 and SCA48). CONCLUSION: Even though differences are observed between the recessive and dominant forms, it appears that a continuum exists between these two entities. While adding new symptoms associated with STUB1 pathogenic variations, we insist on the difficulty of genetic counselling in STUB1-related pathologies. Finally, we underscore the usefulness of DAT-scan as an additional clue for diagnosis.


Subject(s)
Cerebellar Ataxia , Ataxia , Heat-Shock Proteins , Humans , Mutation/genetics , Retrospective Studies , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...