Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Res ; 5(1): 21-33, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17259344

ABSTRACT

In addition to their physiologic effects in inflammation and angiogenesis, chemokines are involved in cancer pathology. The aim of this study was to determine whether the chemokine stromal cell-derived factor 1 (SDF-1) induces the growth, migration, and invasion of human hepatoma cells. We show that SDF-1 G protein-coupled receptor, chemokine (C-X-C motif) receptor 4 (CXCR4), and SDF-1 mRNA are expressed in human hepatoma Huh7 cells, which secrete and bind SDF-1. This binding depends on CXCR4 and glycosaminoglycans. SDF-1 associates with CXCR4, and syndecan-4 (SDC-4), a heparan sulfate proteoglycan at the plasma membrane of Huh7 cells, induces the growth of Huh7 cells by promoting their entry into the cell cycle, and inhibits the tumor necrosis factor-alpha-mediated apoptosis of the cells. SDF-1 also reorganizes Huh7 cytoskeleton and induces tyrosine phosphorylation of focal adhesion kinase. Finally, SDF-1 activates matrix metalloproteinase-9, resulting in increased migration and invasion of Huh7 cells. These biological effects of SDF-1 were strongly inhibited by the CXCR4 antagonist AMD3100, by a glycosaminoglycan, heparin, as well as by beta-D-xyloside treatment of the cells, or by c-jun NH(2)-terminal kinase/stress-activated protein kinase inhibitor. Therefore, the CXCR4, glycosaminoglycans, and the mitogen-activated protein kinase signaling pathways are involved in these events. The fact that reducing SDC-4 expression by RNA interference decreased SDF-1-induced Huh7 hepatoma cell migration and invasion strongly indicates that SDC-4 may be an auxiliary receptor for SDF-1. Finally, the fact that CXCR4 is expressed in hepatocellular carcinoma cells from liver biopsies indicates that the in vitro results reported here could be extended to in vivo conditions.


Subject(s)
Carcinoma, Hepatocellular/pathology , Cell Movement , Cell Proliferation , Chemokines, CXC/physiology , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/metabolism , Chemokine CXCL12 , Flow Cytometry , Fluorescent Antibody Technique , Glycosaminoglycans/pharmacology , Humans , Liver Neoplasms/metabolism , Mitogen-Activated Protein Kinases/metabolism , Neoplasm Invasiveness , Neovascularization, Pathologic , Phosphorylation , RNA Interference , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, CXCR4/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Stromal Cells/metabolism , Stromal Cells/pathology , Syndecan-1/metabolism , Syndecan-2/metabolism , Syndecan-4/antagonists & inhibitors , Syndecan-4/genetics , Syndecan-4/metabolism , Tyrosine/metabolism
2.
Cancer Res ; 66(5): 2844-52, 2006 Mar 01.
Article in English | MEDLINE | ID: mdl-16510607

ABSTRACT

Manganese superoxide dismutase (MnSOD) converts the superoxide anion into H(2)O(2), which, unless it is detoxified by glutathione peroxidase 1 (GPx1), can increase hepatic iron and can react with iron to form genotoxic compounds. We investigated the role of Ala/Val-MnSOD and Pro/Leu-GPx1 polymorphisms on hepatic iron accumulation and hepatocellular carcinoma development in patients with alcoholic cirrhosis. Genotypes were determined in 162 alcoholic patients with cirrhosis but without hepatocellular carcinoma initially, who were prospectively followed up for hepatocellular carcinoma development. We found that patients with two Val-MnSOD alleles (slow H(2)O(2) production) and two Pro-GPx1 alleles (presumably quick H(2)O(2) detoxification) had a lower risk of hepatocellular carcinoma development than other patients (chi(2) trend test, P = 0.001; log-rank, P = 0.0009). Indeed, hepatocellular carcinoma percentage was 0% in subjects with this "2Val-MnSOD/2Pro-GPx1" genotype versus 16%, 27%, and 32% in "2Val-MnSOD/1or2Leu-GPx1," "1or2Ala-MnSOD/2Pro-GPx1," and "1or2Ala-MnSOD/1or2Leu-GPx1" patients, respectively. The percentage of patients with stainable hepatic iron increased progressively with these genotypic associations: 22%, 28%, 50%, and 53%, respectively (chi(2) trend test, P = 0.005). Stainable iron was a risk factor for hepatocellular carcinoma (log-rank, P = 0.0002; relative risk, 3.40). In conclusion, polymorphisms in antioxidant enzymes modulate hepatic iron accumulation and hepatocellular carcinoma development in French alcoholic patients with cirrhosis.


Subject(s)
Carcinoma, Hepatocellular/enzymology , Glutathione Peroxidase/genetics , Iron/metabolism , Liver Cirrhosis, Alcoholic/enzymology , Liver Neoplasms/enzymology , Liver/metabolism , Superoxide Dismutase/genetics , Alleles , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Female , Glutathione Peroxidase/metabolism , Humans , Liver/enzymology , Liver Cirrhosis, Alcoholic/complications , Liver Cirrhosis, Alcoholic/genetics , Liver Cirrhosis, Alcoholic/metabolism , Liver Neoplasms/etiology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Male , Middle Aged , Polymorphism, Genetic , Prospective Studies , Superoxide Dismutase/metabolism , Glutathione Peroxidase GPX1
SELECTION OF CITATIONS
SEARCH DETAIL
...