Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Epidemiol ; 41(2): 108-121, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27885705

ABSTRACT

By jointly analyzing multiple variants within a gene, instead of one at a time, gene-based multiple regression can improve power, robustness, and interpretation in genetic association analysis. We investigate multiple linear combination (MLC) test statistics for analysis of common variants under realistic trait models with linkage disequilibrium (LD) based on HapMap Asian haplotypes. MLC is a directional test that exploits LD structure in a gene to construct clusters of closely correlated variants recoded such that the majority of pairwise correlations are positive. It combines variant effects within the same cluster linearly, and aggregates cluster-specific effects in a quadratic sum of squares and cross-products, producing a test statistic with reduced degrees of freedom (df) equal to the number of clusters. By simulation studies of 1000 genes from across the genome, we demonstrate that MLC is a well-powered and robust choice among existing methods across a broad range of gene structures. Compared to minimum P-value, variance-component, and principal-component methods, the mean power of MLC is never much lower than that of other methods, and can be higher, particularly with multiple causal variants. Moreover, the variation in gene-specific MLC test size and power across 1000 genes is less than that of other methods, suggesting it is a complementary approach for discovery in genome-wide analysis. The cluster construction of the MLC test statistics helps reveal within-gene LD structure, allowing interpretation of clustered variants as haplotypic effects, while multiple regression helps to distinguish direct and indirect associations.


Subject(s)
Genetic Markers/genetics , Haplotypes/genetics , Linear Models , Linkage Disequilibrium , Models, Genetic , Polymorphism, Single Nucleotide/genetics , Humans , Phenotype , Quantitative Trait Loci
2.
Genet Epidemiol ; 39(7): 518-28, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26411674

ABSTRACT

The "winner's curse" is a subtle and difficult problem in interpretation of genetic association, in which association estimates from large-scale gene detection studies are larger in magnitude than those from subsequent replication studies. This is practically important because use of a biased estimate from the original study will yield an underestimate of sample size requirements for replication, leaving the investigators with an underpowered study. Motivated by investigation of the genetics of type 1 diabetes complications in a longitudinal cohort of participants in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Genetics Study, we apply a bootstrap resampling method in analysis of time to nephropathy under a Cox proportional hazards model, examining 1,213 single-nucleotide polymorphisms (SNPs) in 201 candidate genes custom genotyped in 1,361 white probands. Among 15 top-ranked SNPs, bias reduction in log hazard ratio estimates ranges from 43.1% to 80.5%. In simulation studies based on the observed DCCT/EDIC genotype data, genome-wide bootstrap estimates for false-positive SNPs and for true-positive SNPs with low-to-moderate power are closer to the true values than uncorrected naïve estimates, but tend to overcorrect SNPs with high power. This bias-reduction technique is generally applicable for complex trait studies including quantitative, binary, and time-to-event traits.


Subject(s)
Genome-Wide Association Study/methods , Bias , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/therapy , False Positive Reactions , Female , Genotype , Humans , Kidney Diseases/complications , Kidney Diseases/genetics , Kidney Diseases/pathology , Male , Models, Genetic , Phenotype , Polymorphism, Single Nucleotide/genetics , Proportional Hazards Models , Risk , Sample Size , Time Factors
3.
J Natl Cancer Inst ; 107(11)2015 Nov.
Article in English | MEDLINE | ID: mdl-26319099

ABSTRACT

BACKGROUND: Inflammation has been hypothesized to increase the risk of cancer development as an initiator or promoter, yet no large-scale study of inherited variation across cancer sites has been conducted. METHODS: We conducted a cross-cancer genomic analysis for the inflammation pathway based on 48 genome-wide association studies within the National Cancer Institute GAME-ON Network across five common cancer sites, with a total of 64 591 cancer patients and 74 467 control patients. Subset-based meta-analysis was used to account for possible disease heterogeneity, and hierarchical modeling was employed to estimate the effect of the subcomponents within the inflammation pathway. The network was visualized by enrichment map. All statistical tests were two-sided. RESULTS: We identified three pleiotropic loci within the inflammation pathway, including one novel locus in Ch12q24 encoding SH2B3 (rs3184504), which reached GWAS significance with a P value of 1.78 x 10(-8), and it showed an association with lung cancer (P = 2.01 x 10(-6)), colorectal cancer (GECCO P = 6.72x10(-6); CORECT P = 3.32x10(-5)), and breast cancer (P = .009). We also identified five key subpathway components with genetic variants that are relevant for the risk of these five cancer sites: inflammatory response for colorectal cancer (P = .006), inflammation related cell cycle gene for lung cancer (P = 1.35x10(-6)), and activation of immune response for ovarian cancer (P = .009). In addition, sequence variations in immune system development played a role in breast cancer etiology (P = .001) and innate immune response was involved in the risk of both colorectal (P = .022) and ovarian cancer (P = .003). CONCLUSIONS: Genetic variations in inflammation and its related subpathway components are keys to the development of lung, colorectal, ovary, and breast cancer, including SH2B3, which is associated with lung, colorectal, and breast cancer.


Subject(s)
Breast Neoplasms/genetics , Colorectal Neoplasms/genetics , Inflammation/genetics , Lung Neoplasms/genetics , Ovarian Neoplasms/genetics , Prostatic Neoplasms/genetics , Proteins/genetics , Signal Transduction , Adaptor Proteins, Signal Transducing , Breast Neoplasms/metabolism , Colorectal Neoplasms/metabolism , Female , Genome-Wide Association Study , Humans , Inflammation/metabolism , Intracellular Signaling Peptides and Proteins , Lung Neoplasms/metabolism , Male , Ovarian Neoplasms/metabolism , Prostatic Neoplasms/metabolism
4.
Genet Epidemiol ; 39(3): 197-206, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25644374

ABSTRACT

Lung cancer is the leading cause of cancer death worldwide. Although several genetic variants associated with lung cancer have been identified in the past, stringent selection criteria of genome-wide association studies (GWAS) can lead to missed variants. The objective of this study was to uncover missed variants by using the known association between lung cancer and first-degree family history of lung cancer to enrich the variant prioritization for lung cancer susceptibility regions. In this two-stage GWAS study, we first selected a list of variants associated with both lung cancer and family history of lung cancer in four GWAS (3,953 cases, 4,730 controls), then replicated our findings for 30 variants in a meta-analysis of four additional studies (7,510 cases, 7,476 controls). The top ranked genetic variant rs12415204 in chr10q23.33 encoding FFAR4 in the Discovery set was validated in the Replication set with an overall OR of 1.09 (95% CI=1.04, 1.14, P=1.63×10(-4)). When combining the two stages of the study, the strongest association was found in rs1158970 at Ch4p15.2 encoding KCNIP4 with an OR of 0.89 (95% CI=0.85, 0.94, P=9.64×10(-6)). We performed a stratified analysis of rs12415204 and rs1158970 across all eight studies by age, gender, smoking status, and histology, and found consistent results across strata. Four of the 30 replicated variants act as expression quantitative trait loci (eQTL) sites in 1,111 nontumor lung tissues and meet the genome-wide 10% FDR threshold.


Subject(s)
Biomarkers, Tumor/genetics , Genetic Predisposition to Disease , Genetic Variation/genetics , Genome-Wide Association Study , Lung Neoplasms , Phenotype , Case-Control Studies , Female , Humans , Lung Neoplasms/genetics , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...