Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Learn Behav ; 50(3): 306-316, 2022 09.
Article in English | MEDLINE | ID: mdl-35680700

ABSTRACT

Central place foraging field crickets are an ideal system for studying the adaptive value of learning and memory, but more research is needed on ecologically relevant cognition in these invertebrates. Here, we test the visuospatial place learning of Texas field crickets (Gryllus texensis) in a radial arm maze. Our study expands previous work on G. texensis cognition for accuracy measures and extends our previous findings on females to both sexes. Additionally, our study examines whether crickets use intra- or extra-maze cues to locate a food reward using a maze rotation that puts the cues in conflict. We found that male and female crickets improved performance over trials when measured by accuracy variables but not latency variables. Thigmotaxis negatively impacted performance in both sexes. In a reward-absent trial, both male and female crickets demonstrated place memory. When intra- and extra-maze cues conflicted during a rotation trial, crickets' performance was not better than chance. Our rotation results suggest that crickets may experience reciprocal overshadowing of conflicting cues - a result most often seen in other taxa with conflicting multi-modal cues. We conclude that crickets do not rely solely on: (1) a single-cue association, (2) route-following, or (3) their own scent cues to navigate the maze. Instead, male and female Texas field crickets seem to learn the location of the reward using a combination of proximal and distal cues. The possibility to test large numbers of wild-caught or laboratory-reared individuals opens the door to future investigations on the evolutionary ecology of visuospatial learning in these invertebrates.


Subject(s)
Cues , Gryllidae , Animals , Cognition , Female , Learning , Male , Maze Learning , Texas
2.
Proc Biol Sci ; 287(1940): 20201853, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33290683

ABSTRACT

General intelligence has been a topic of high interest for over a century. Traditionally, research on general intelligence was based on principal component analyses and other dimensionality reduction approaches. The advent of high-speed computing has provided alternative statistical tools that have been used to test predictions of human general intelligence. In comparison, research on general intelligence in non-human animals is in its infancy and still relies mostly on factor-analytical procedures. Here, we argue that dimensionality reduction, when incorrectly applied, can lead to spurious results and limit our understanding of ecological and evolutionary causes of variation in animal cognition. Using a meta-analytical approach, we show, based on 555 bivariate correlations, that the average correlation among cognitive abilities is low (r = 0.185; 95% CI: 0.087-0.287), suggesting relatively weak support for general intelligence in animals. We then use a case study with relatedness (genetic) data to demonstrate how analysing traits using mixed models, without dimensionality reduction, provides new insights into the structure of phenotypic variance among cognitive traits, and uncovers genetic associations that would be hidden otherwise. We hope this article will stimulate the use of alternative tools in the study of cognition and its evolution in animals.


Subject(s)
Cognition , Models, Theoretical , Animals , Intelligence , Principal Component Analysis
3.
Evol Appl ; 12(7): 1318-1328, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31417617

ABSTRACT

Isolation of small populations is expected to reduce fitness through inbreeding and loss of genetic variation, impeding population growth and compromising population persistence. Species with long generation time are the least likely to be rescued by evolution alone. Management interventions that maintain or restore genetic variation to assure population viability are consequently of significant importance. We investigated, over 27 years, the genetic and demographic consequences of a demographic bottleneck followed by artificial supplementation in an isolated population of bighorn sheep (Ovis canadensis). Based on a long-term pedigree and individual monitoring, we documented the genetic decline, restoration and rescue of the population. Microsatellite analyses revealed that the demographic bottleneck reduced expected heterozygosity and allelic diversity by 6.2% and 11.3%, respectively, over two generations. Following supplementation, first-generation admixed lambs were 6.4% heavier at weaning and had 28.3% higher survival to 1 year compared to lambs of endemic ancestry. Expected heterozygosity and allelic diversity increased by 4.6% and 14.3% after two generations through new alleles contributed by translocated individuals. We found no evidence for outbreeding depression and did not see immediate evidence of swamping of local genes. Rapid intervention following the demographic bottleneck allowed the genetic restoration and rescue of this bighorn sheep population, likely preventing further losses at both the genetic and demographic levels. Our results provide further empirical evidence that translocation can be used to reduce inbreeding depression in nature and has the potential to mitigate the effect of human-driven environmental changes on wild populations.

SELECTION OF CITATIONS
SEARCH DETAIL
...