Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 13221, 2024 06 08.
Article in English | MEDLINE | ID: mdl-38851807

ABSTRACT

In exploring nature's potential in addressing diabetes-related conditions, this study investigates the therapeutic capabilities of 3-formyl chromone derivatives. Utilizing in silico methodologies, we focus on 6-substituted 3-formyl chromone derivatives (1-16) to assess their therapeutic potential in treating diabetes. The research examined the formyl group at the chromone's C-3 position. ADMET, biological activities, were conducted along with B3LYP calculations using 3 different basis sets. The analogues were analyzed based on their parent structure obtained from PubChem. The HOMO-LUMO gap confirmed the bioactive nature of the derivatives, NBO analysis was performed to understand the charge transfer. PASS prediction revealed that 3-formyl chromone derivatives are potent aldehyde oxidase inhibitors, insulin inhibitors, HIF1A expression inhibitors, and histidine kinase. Molecular docking studies indicated that the compounds had a strong binding affinity with proteins, including CAD, BHK, IDE, HIF-α, p53, COX, and Mpro of SARS-CoV2. 6-isopropyl-3-formyl chromone (4) displayed the highest affinity for IDE, with a binding energy of - 8.5 kcal mol-1. This result outperformed the affinity of the reference standard dapagliflozin (- 7.9 kcal mol-1) as well as two other compounds that target human IDE, namely vitexin (- 8.3 kcal mol-1) and myricetin (- 8.4 kcal mol-1). MD simulations were revealed RMSD value between 0.2 and 0.5 nm, indicating the strength of the protein-ligand complex at the active site.


Subject(s)
Chromones , Hypoglycemic Agents , Molecular Docking Simulation , Chromones/chemistry , Chromones/pharmacology , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Computer Simulation
2.
MethodsX ; 12: 102691, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38660042

ABSTRACT

In this study, we synthesized novel α,ß-unsaturated 2-cyanoacetamide derivatives (1-5) using microwave-assisted Knoevenagel condensation. Characterization of these compounds was carried out using FTIR and 1H NMR spectroscopy. We then evaluated their in vitro antibacterial activity against both gram-positive and gram-negative pathogenic bacteria. Additionally, we employed in silico methods, including ADMET prediction and density functional theory (DFT) calculations of molecular orbital properties, to investigate these cyanoacetamide derivatives (1-5). Molecular docking was used to assess the binding interactions of these derivatives (1-5) with seven target proteins (5MM8, 4NZZ, 7FEQ, 5NIJ, ITM2, 6SE1, and 5GVZ) and compared them to the reference standard tyrphostin AG99. Notably, derivative 5 exhibited the most favorable binding affinity, with a binding energy of -7.7 kcal mol-1 when interacting with the staphylococcus aureus (PDB:5MM8), while also meeting all drug-likeness criteria. Additionally, molecular dynamics simulations were carried out to evaluate the stability of the interaction between the protein and ligand, utilizing parameters such as Root-Mean-Square Deviation (RMSD), Root-Mean-Square Fluctuation (RMSF), Radius of Gyration (Rg), and Principal Component Analysis (PCA). A 50 nanosecond molecular dynamics (MD) simulation was performed to investigate stability further, incorporating RMSD and RMSF analyses on compound 5 within the active binding site of the modeled protein across different temperatures (300, 305, 310, and 320 K). Among these temperatures, compound 5 exhibited an RMSD value ranging from approximately 0.2 to 0.3 nm at 310 K (body temperature) with the 5MM8 target, which differed from the other temperature conditions. The in silico results suggest that compound 5 maintained significant conformational stability throughout the 50 ns simulation period. It is consistent with its low docking energy and in vitro findings concerning α,ß-unsaturated cyanoacetamides. Key insights from this study include:•The creation of innovative α,ß-unsaturated 2-cyanoacetamide derivatives (1-5) employing cost-effective, licensed, versatile, and efficient software for both in silico and in vitro assessment of antibacterial activity.•Utilization of FTIR and NMR techniques for characterizing compounds 1-5.

3.
J Biomol Struct Dyn ; 41(6): 2518-2527, 2023 04.
Article in English | MEDLINE | ID: mdl-35132950

ABSTRACT

The battle against SARS-CoV-2 coronavirus is the focal point for the global pandemic that has affected millions of lives worldwide. The need for effective and selective therapeutics for the treatment of the disease caused by SARS-CoV-2 is critical. Herein, we performed a hierarchical computational approach incorporating molecular docking studies, molecular dynamics simulations, absolute binding energy calculations, and steered molecular dynamics simulations for the discovery of potential compounds with high affinity towards SARS-CoV-2 spike RBD. By leveraging ZINC15 database, a total of 1282 in-clinical and FDA approved drugs were filtered out from nearly 0.5 million protomers of relatively large compounds (MW > 500, and LogP ≤ 5). Our results depict plausible mechanistic aspects related to the blockage of SARS-CoV-2 spike RBD by the top hits discovered. We found that the most promising candidates, namely, ZINC95628821, ZINC95617623, ZINC3979524, and ZINC261494658, strongly bind to the spike RBD and interfere with the human ACE2 receptor. These findings accelerate the rational design of selective inhibitors targeting the spike RBD protein of SARS-CoV-2.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Humans , Molecular Docking Simulation , SARS-CoV-2 , Molecular Dynamics Simulation , Pandemics , Protein Binding
4.
J Biomol Struct Dyn ; 40(5): 2099-2112, 2022 03.
Article in English | MEDLINE | ID: mdl-33103586

ABSTRACT

COVID-19, which is caused by a novel coronavirus known as SARS-CoV-2, has spread rapidly around the world, and it has infected more than 29 million individuals as recorded on 16 September 2020. Much effort has been made to stop the virus from spreading, and there are currently no approved pharmaceutical products to treat COVID-19. Here, we apply an in silico approach to investigate more than 3800 FDA approved drugs on the viral RBD S1-ACE2 interface as a target. The compounds were investigated through flexible ligand docking, ADME property calculations and protein-ligand interaction maps. Molecular dynamics (MD) simulations were also performed on eleven compounds to study the stability and the interactions of the protein-ligand complexes. The MD simulations show that bagrosin, chidamide, ebastine, indacaterol, regorafenib, salazosulfadimidine, silodosin and tasosartan are relatively stable near the C terminal domain (CTD1) of the S1 subunit of the viral S protein. The relative MMGBSA binding energies show that silodosin has the best binding to the target. The constant velocity steered molecular dynamics (SMD) simulations show that silodosin preferentially interacts with the RBD S1 and has potential to act as an interfering compound between viral spike-host ACE2 interactions. Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 Drug Treatment , Pharmaceutical Preparations , Glycoproteins , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , SARS-CoV-2
5.
Phys Chem Chem Phys ; 22(40): 23099-23106, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33025993

ABSTRACT

COVID-19 has caused lockdowns all over the world in early 2020, as a global pandemic. Both theoretical and experimental efforts are seeking to find an effective treatment to suppress the virus. In silico drug design can play a vital role in identifying promising drug candidates against COVID-19. Herein, we focused on the main protease of SARS-CoV-2 that has crucial biological functions in the virus. We performed a ligand-based virtual screening followed by a docking screening for testing approved drugs and bioactive compounds listed in the DrugBank and ChEMBL databases. The top 8 docking results were advanced to all-atom MD simulations to study the relative stability of the protein-ligand interactions. MD simulations support that the catalytic residue, His41, has a neutral side chain with a protonated delta position. An absolute binding energy (ΔG) of -42 kJ mol-1 for the protein-ligand (Mpro-N3) complex has been calculated using the potential-of-mean-force (geometrical) approach. Furthermore, the relative binding energies were computed for the top docking results. Our results suggest several promising approved and bioactive inhibitors of SARS-CoV-2 Mpro as follows: a bioactive compound, ChEMBL275592, which has the best MM/GBSA binding energy; the second-best compound, montelukast, is an approved drug used in the treatment of asthma and allergic rhinitis; the third-best compound, ChEMBL288347, is a bioactive compound. Bromocriptine and saquinavir are other approved drugs that also demonstrate stability in the active site of Mpro, albeit their relative binding energies are low compared to the N3 inhibitor. This study provides useful insights into de novo protein design and novel inhibitor development, which could reduce the cost and time required for the discovery of a potent drug to combat SARS-CoV-2.


Subject(s)
Betacoronavirus/enzymology , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus 3C Proteases , Coronavirus Infections/pathology , Coronavirus Infections/virology , Cysteine Endopeptidases/metabolism , Drug Design , Humans , Hydrogen Bonding , Ligands , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Protease Inhibitors/metabolism , SARS-CoV-2 , Static Electricity , Thermodynamics , Viral Nonstructural Proteins/metabolism
6.
Appl Nanosci ; 10(11): 3987-3998, 2020.
Article in English | MEDLINE | ID: mdl-32837805

ABSTRACT

Nanoparticle-facilitated drug delivery forms the core of medicine nowadays with the drug being delivered right at the target, reducing side effects and enhancing therapeutic value. Nanoparticles derived from natural compounds are further a point of focus being biocompatible and safe by and large. In this study, we have performed HF/6-31G calculations coupled with intermolecular interaction calculations and nanoscale molecular dynamics simulations to investigate self-assemblage in curcumin induced by trigonelline. Similar to recently reported self-assemblage in curcumin induced by sugar, trigonelline, a natural antidiabetic derived from fenugreek, can also induce auto-catalyzed self-assemblage in curcumin to form nanoparticles. It has been shown that these nanoparticles may be utilized for the delivery of drugs with severe side effects especially for diabetic patients with triple benefit of being antidiabetic, biocompatible and safe. As an example, carriage of antidiabetic drug pioglitazone and anticancer drug taxol have been depicted utilizing nanoparticles of curcumin and trigonelline. Twenty five taxol molecules could be comfortably carried in a 50 nm nanoparticle with an average overall root mean square deviation of 2.89 Å with reference to initial positions. For the first time, this study shows the possibility of developing antidiabetic nanoparticles with plethora of opportunities for diabetic patients. The study is expected to motivate experimental verification and has a long lasting impact in medicinal chemistry.

7.
J Phys Chem B ; 124(17): 3494-3504, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32250119

ABSTRACT

The aminoglycoside phosphotransferase (APH(3')-IIIa) kinases form a clinically central group of antibiotic-resistant enzymes. Computationally, we have studied the catalytic mechanism of the APH(3')-IIIa enzyme at the atomic-level. The proposed reaction mechanism involves protonation of Asp190 by the kanamycin 3'-hydroxyl group mediated through an explicit neighboring water molecule, which leads to a simultaneous nucleophilic attack on the γ-phosphate of the ATP by the deprotonated kanamycin 3'-hydroxyl group. The second step is a proton abstraction from the protonated Asp190 to the phosphate group of the phosphorylated kanamycin mediated by an explicit water molecule. The calculated Gibbs energy of activation (ΔG⧧) of the rate-determining step for the phosphorylation reaction is 77 kJ mol-1 at the M06-2X/6-311++G(2df,p)//ONIOM(M06-2X/6-31+G(d):HF/6-31G(d)) level of theory. This study has provided a new understanding of the APH(3')-IIIa catalytic mechanism that agrees with the available experimental data (ΔG⧧ = 75 ± 4 kJ mol-1) and could provide a starting point for the rational design of mechanism-based inhibitors of aminoglycoside modifying enzyme to circumvent antibiotic resistance.


Subject(s)
Anti-Bacterial Agents , Kanamycin , Catalysis , Kanamycin Kinase/metabolism , Phosphorylation
8.
Chemistry ; 22(13): 4408-12, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26811874

ABSTRACT

The cytochromes P450 are hemoproteins that catalyze a range of oxidative C-H functionalization reactions, including aliphatic and aromatic hydroxylation. These transformations are important in a range of biological contexts, including biosynthesis and xenobiotic biodegradation. Much work has been carried out on the mechanism of aliphatic hydroxylation, implicating hydrogen atom abstraction, but aromatic hydroxylation is postulated to proceed differently. One mechanism invokes as the key intermediate an arene oxide (and/or its oxepin tautomer). Conclusive isolation of this intermediate has remained elusive and, currently, direct formation of phenols from a Meisenheimer intermediate is believed to be favored. We report here the identification of a P450 [P450cam (CYP101A1) and P450cin (CYP176A1)]-generated arene oxide as a product of in vitro oxidation of tert-butylbenzene. Computations (CBS-QB3) predict that the arene oxide and oxepin have similar stabilities to other arene oxides/oxepins implicated (but not detected) in P450-mediated transformations, suggesting that arene oxides can be unstable terminal products of P450-catalyzed aromatic oxidation that can explain the origin of some observed metabolites.


Subject(s)
Cytochrome P-450 Enzyme System/chemistry , Oxepins/chemistry , Oxides/chemistry , Catalysis , Cytochrome P-450 Enzyme System/metabolism , Hydroxylation , Oxidation-Reduction
9.
J Phys Chem A ; 119(15): 3615-20, 2015 Apr 16.
Article in English | MEDLINE | ID: mdl-25798745

ABSTRACT

The perhalogenated methanols (CX3OH; X = F, Cl, and Br) are found in the atmosphere as products of the degradation of halocarbons. The thermochemical properties for these molecules have been calculated at the HF, MP2, and B3LYP levels of theories in conjunction with six different basis sets as well as at G3MP2 and CBS-QB3. Calculated properties include the gas-phase enthalpies of formation (ΔfH(0)), gas-phase acidities (ΔacidG(0)), gas-phase proton affinity, and bond dissociation energies of the C-O and O-H bonds of CX3OH. Excellent agreement is found between the results obtained using G3MP2 and CBS-QB3 methods and the available experimental data. The results obtained using MP2 are more consistent with the experimental, G3MP2, and CBS-QB3 values than those computed at B3LYP. In general, the 6-311+G(d,p) basis set when combined with the HF or MP2 level of theory produced better results than other basis sets considered in this study.

10.
J Phys Chem B ; 118(9): 2316-30, 2014 Mar 06.
Article in English | MEDLINE | ID: mdl-24499522

ABSTRACT

Glutamine--a popular nutritional supplement, non-toxic amino acid, and an essential interorgan and intercellular ammonia transporter--can destroy the neurons' mitochondria. When glutamine enters (like a Trojan horse) into the mitochondria, in the presence of glutaminase, it reacts with water and yields glutamate and excess ammonia which opens gates in the membrane of the mitochondria and thereby destroys it. The mechanistic details underlying the molecular basis of the catabolic production of excess ammonia remain unclear. In the present paper, both 5-oxoproline-mediated and direct pathways for glutamine deamidation are studied using wave function and density functional theories. The mechanisms are studied both in the gas phase and in aqueous solution using the polarizable continuum model (PCM) and solvent model on density (SMD) solvation models. Among three glutamine deamidation pathways, a two-step pathway, GDB, shows the lowest gas phase barrier height of 189 kJ/mol with the G3MP2B3 level of theory. Incorporation of solvent through PCM and SMD models reduces the barrier height to 183 and 174 kJ/mol, respectively. For the hydrolysis of 5-oxoproline, a two-step mechanism, pathway PH-B, provides a lower gas phase energy barrier (187 kJ/mol) compared to one-step (201 kJ/mol) and three-step (227 kJ/mol) pathways at G3MP2B3. Although direct hydrolysis with OH(-), pathway DHE, has the lowest gas phase barrier of 135 kJ/mol, the solvent has little effect on the barrier. For the direct hydrolysis with OH(-)/H2O, pathway DHF, the overall barrier is 143 kJ/mol, in the gas phase at G3MP2B3. In aqueous solution, the overall barrier decreases to 76 and 75 kJ/mol with PCM and SMD, respectively, at B3LYP/6-31+G(d,p), making this the most plausible mechanism. Compared to PCM, SMD predicts lower barriers for nearly all pathways investigated.


Subject(s)
Glutamine/metabolism , Models, Molecular , Gases/chemistry , Hydrolysis , Hydroxides/chemistry , Solutions/chemistry , Thermodynamics , Water/chemistry
11.
J Phys Chem B ; 116(10): 3220-34, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22329643

ABSTRACT

This study provides comprehensive benchmark calculations for the thermochemical properties of the common α-amino acids. Calculated properties include the proton affinity, gas-phase basicity, protonation entropy, ΔH°(acid), ΔG°(acid), and enthalpies of formation for the protonated and deprotonated α-amino acids. In order to determine the performance at various levels of theory, including density functional methods and composite methods, the calculated thermochemical properties are compared to experimental results. For all the common α-amino acids investigated, the thermochemical properties computed with the Gaussian-n theories were found to be quite consistent with each other in terms of mean absolute deviation from experiment. While all Gaussian-n theory values can serve as benchmarks, we focus on the G3MP2 values as it is the least resource-intensive of the Gaussian-n theories considered.


Subject(s)
Amino Acids/chemistry , Gases/chemistry , Hydrogen-Ion Concentration , Protons , Thermodynamics
12.
J Phys Chem A ; 115(48): 14092-9, 2011 Dec 08.
Article in English | MEDLINE | ID: mdl-22026587

ABSTRACT

Motivated by the necessity to understand the pyrolysis of alkylated amines, unimolecular decomposition of acetamide is investigated herein as a model compound. Standard heats of formation, entropies, and heat capacities, are calculated for all products and transition structures using several accurate theoretical levels. The potential energy surface is mapped out for all possible channels encountered in the pyrolysis of acetamide. The formation of acetamedic acid and 1-aminoethenol and their subsequent decomposition pathways are found to afford the two most energetically favored pathways. However, RRKM analysis shows that the fate of acetamedic acid and 1-aminoethenol at all temperatures and pressures is to reisomerize to the parent acetamide. 1-Aminoethenol, in particular, is predicted to be a long-lived species enabling its participation in bimolecular reactions that lead to the formation of the major experimental products. Results presented herein reflect the importance of bimolecular reactions involving acetamide and 1-aminoethenol in building a robust model for the pyrolysis of N-alkylated amides.


Subject(s)
Acetamides/chemistry , Chemistry, Organic , Gases/chemistry , Models, Molecular , Hot Temperature , Isomerism , Kinetics , Pressure , Quantum Theory , Thermodynamics
13.
J Comput Chem ; 32(12): 2708-15, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21647931

ABSTRACT

The potential energy surface for the unimolecular decomposition of thiophenol (C(6)H(5)SH) is mapped out at two theoretical levels; BB1K/GTlarge and QCISD(T)/6-311+G(2d,p)//MP2/6-31G(d,p). Calculated reaction rate constants at the high pressure limit indicate that the major initial channel is the formation of C(6)H(6)S at all temperatures. Above 1000 K, the contribution from direct fission of the S-H bond becomes important. Other decomposition channels, including expulsion of H(2) and H(2)S are of negligible importance. The formation of C(6)H(6)S is predicted to be strong-pressure dependent above 900 K. Further decomposition of C(6)H(6)S produces CS and C(5)H(6). Overall, despite the significant difference in bond dissociation, i.e., 8-9 kcal/mol between the S-H bond in thiophenol and the O-H bond in phenol, H migration at the ortho position in the two molecules represents the most accessible initial channel.


Subject(s)
Carbon Compounds, Inorganic/chemistry , Models, Theoretical , Phenols/chemistry , Sulfhydryl Compounds/chemistry , Sulfides/chemistry , Kinetics , Models, Chemical , Temperature , Thermodynamics
14.
J Phys Chem B ; 115(29): 9151-9, 2011 Jul 28.
Article in English | MEDLINE | ID: mdl-21678968

ABSTRACT

Oxidation of guanine in DNA yields the nucleobase damage product 8-oxoguanine (8-oxoG), whose further oxidation gives other more stable products. In the present study, the mechanism for the deamination of 8-oxoG with H(2)O, 2H(2)O, H(2)O/OH(-), and 2H(2)O/OH(-) and for protonated 8-oxoG (8-oxoGH(+)) with H(2)O has been investigated using ab initio calculations. All structures were optimized at RHF/6-31G(d), MP2/6-31G(d), and B3LYP with the 6-31G(d), 6-31+G(d), 6-31G(d,p), 6-31+G(d,p), and 6-31++G(d.p) basis sets. Energies were determined at the G3MP2 level of theory, and solvent calculations were performed using both the polarizable continuum model (PCM) and the solvation model on density (SMD). Intrinsic reaction coordinate calculations were performed to characterize the transition states on the potential energy surface. Thermodynamic properties (ΔE, ΔH, and ΔG), activation energies, enthalpies, and Gibbs free energies of activation were also calculated for each reaction investigated. All pathways yield an initial tetrahedral intermediate and, in the final step, an intermediate that dissociates to products via a 1,3-proton shift. At the G3MP2 level of theory, deamination with H(2)O/OH(-) was found to have an overall activation energy of 187, 176, and 156 kJ mol(-1) for the gas phase, PCM, and SMD, respectively, which are ∼50 kJ mol(-1) lower than with H(2)O only. These barriers can be compared to those for the reaction of 8-oxoGH(+) with H(2)O of 248 kJ mol(-1) in the gas phase and 238 kJ mol(-1) in aqueous solution (PCM). The lowest overall activation energies (G3MP2) are for the deamination of 8-oxoG with 2H(2)O/OH(-), 134 kJ mol(-1) in the gas phase and 129 kJ mol(-1) with PCM.


Subject(s)
Guanine/analogs & derivatives , Models, Chemical , Amination , Guanine/chemistry , Hydroxides/chemistry , Models, Molecular , Molecular Conformation , Protons , Quantum Theory , Reproducibility of Results , Solvents/chemistry , Thermodynamics , Water/chemistry
15.
J Phys Chem A ; 115(10): 2065-76, 2011 Mar 17.
Article in English | MEDLINE | ID: mdl-21338176

ABSTRACT

The mechanism for the deamination of guanine with H(2)O, OH(-), H(2)O/OH(-) and for GuaH(+) with H(2)O has been investigated using ab initio calculations. Optimized geometries of the reactants, transition states, intermediates, and products were determined at RHF/6-31G(d), MP2/6-31G(d), B3LYP/6-31G(d), and B3LYP/6-31+G(d) levels of theory. Energies were also determined at G3MP2, G3MP2B3, G4MP2, and CBS-QB3 levels of theory. Intrinsic reaction coordinate (IRC) calculations were performed to characterize the transition states on the potential energy surface. Thermodynamic properties (ΔE, ΔH, and ΔG), activation energies, enthalpies, and Gibbs free energies of activation were also calculated for each reaction investigated. All pathways yield an initial tetrahedral intermediate and an intermediate in the last step that dissociates to products via a 1,3-proton shift. At the G3MP2 level of theory, deamination with OH(-) was found to have an activation energy barrier of 155 kJ mol(-1) compared to 187 kJ mol(-1) for the reaction with H(2)O and 243 kJ mol(-1) for GuaH(+) with H(2)O. The lowest overall activation energy, 144 kJ mol(-1) at the G3MP2 level, was obtained for the deamination of guanine with H(2)O/OH(-). Due to a lack of experimental results for guanine deamination, a comparison is made with those of cytosine, whose deamination reaction parallels that of guanine.


Subject(s)
Guanine/chemistry , Quantum Theory , Deamination , Hydroxides/chemistry , Models, Molecular , Molecular Conformation , Protons , Thermodynamics , Water/chemistry
16.
J Phys Chem A ; 115(5): 852-67, 2011 Feb 10.
Article in English | MEDLINE | ID: mdl-21189033

ABSTRACT

Radial densities are explored as an alternative method for partitioning the molecular density into atomic regions and bonding regions. The radial densities for atoms in molecules are similar to those of an isolated atom. The method may also provide an alternative to Bragg-Slater radii.

17.
J Chem Theory Comput ; 5(1): 126-35, 2009 Jan 13.
Article in English | MEDLINE | ID: mdl-26609826

ABSTRACT

A novel approach to empirically modeling the electronic structure of molecules is introduced. The theory is based on relationships between molecular orbital energy components and the average distance between electrons and electrons and nuclei. The electron-electron and electron-nucleus distances are subsequently related to interatomic distances which provides a means for modeling the electronic structure of molecules. The general energy expression for a simulated electronic structure theory is defined, along with the functional form of the interatomic distance dependent energy functions. The theory is used to model the hydrogen molecule, the first-row hydrides, and ethane. The models, which have the correct RHF/6-31G(d) optimized geometries, also fit the RHF/6-31G(d) energy at equilibrium and the UHF/6-31G(d) energy at the bond dissociation limit as well as some vibrational frequencies.

18.
J Phys Chem A ; 112(41): 10264-73, 2008 Oct 16.
Article in English | MEDLINE | ID: mdl-18816038

ABSTRACT

Nucleophile (11)C/ (14)C [ k (11)/ k (14)] and secondary alpha-deuterium [( k H/ k D) alpha] kinetic isotope effects (KIEs) were measured for the S N2 reactions between tetrabutylammonium cyanide and ethyl iodide, bromide, chloride, and tosylate in anhydrous DMSO at 20 degrees C to determine whether these isotope effects can be used to determine the structure of S N2 transition states. Interpreting the experimental KIEs in the usual fashion (i.e., that a smaller nucleophile KIE indicates the Nu-C alpha transition state bond is shorter and a smaller ( k H/ k D) alpha is found when the Nu-LG distance in the transition state is shorter) suggests that the transition state is tighter with a slightly shorter NC-C alpha bond and a much shorter C alpha-LG bond when the substrate has a poorer halogen leaving group. Theoretical calculations at the B3LYP/aug-cc-pVDZ level of theory support this conclusion. The results show that the experimental nucleophile (11)C/ (14)C KIEs can be used to determine transition-state structure in different reactions and that the usual method of interpreting these KIEs is correct. The magnitude of the experimental secondary alpha-deuterium KIE is related to the nucleophile-leaving group distance in the S N2 transition state ( R TS) for reactions with a halogen leaving group. Unfortunately, the calculated and experimental ( k H/ k D) alpha's change oppositely with leaving group ability. However, the calculated ( k H/ k D) alpha's duplicate both the trend in the KIE with leaving group ability and the magnitude of the ( k H/ k D) alpha's for the ethyl halide reactions when different scale factors are used for the high and the low energy vibrations. This suggests it is critical that different scaling factors for the low and high energy vibrations be used if one wishes to duplicate experimental ( k H/ k D) alpha's. Finally, neither the experimental nor the theoretical secondary alpha-deuterium KIEs for the ethyl tosylate reaction fit the trend found for the reactions with a halogen leaving group. This presumably is found because of the bulky (sterically hindered) leaving group in the tosylate reaction. From every prospective, the tosylate reaction is too different from the halogen reactions to be compared.


Subject(s)
Computer Simulation , Deuterium/chemistry , Hydrocarbons, Halogenated/chemistry , Models, Chemical , Quantum Theory , Thermodynamics , Carbon Radioisotopes/chemistry , Ethyl Chloride/chemistry , Hydrocarbons, Brominated/chemistry , Hydrocarbons, Iodinated/chemistry , Kinetics , Quaternary Ammonium Compounds/chemistry , Tosyl Compounds/chemistry
19.
J Chem Inf Model ; 48(4): 831-43, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18380427

ABSTRACT

Mechanisms for the deamination reaction of cytosine with H 2O/OH (-) and 2H 2O/OH (-) to produce uracil were investigated using ab initio calculations. Optimized geometries of reactants, transition states, intermediates, and products were determined at MP2 and B3LYP using the 6-31G(d) basis set and at B3LYP/6-31+G(d) levels of theory. Single point energies were also determined at MP2/G3MP2Large and G3MP2 levels of theory. Thermodynamic properties (Delta E, Delta H, and Delta G), activation energies, enthalpies, and free energies of activation were calculated for each reaction pathway investigated. Intrinsic reaction coordinate (IRC) analysis was performed to characterize the transition states on the potential energy surface. Seven pathways for the deamination reaction were found. All pathways produce an initial tetrahedral intermediate followed by several conformational changes. The final intermediate for all pathways dissociates to product via a 1-3 proton shift. The activation energy for the rate-determining step, the formation of the tetrahedral intermediate for pathway D, the only pathway that can lead to uracil, is 115.3 kJ mol (-1) at the G3MP2 level of theory, in excellent agreement with the experimental value (117 +/- 4 kJ mol (-1)).


Subject(s)
Cytosine/chemistry , Water/chemistry , Deamination , Models, Molecular , Thermodynamics
20.
J Chem Theory Comput ; 4(1): 86-100, 2008 Jan.
Article in English | MEDLINE | ID: mdl-26619982

ABSTRACT

Ab initio calculations were carried out for isogyric reactions involving the third row elements, Ga, Ge, As, Se, and Br. Geometries of all the reactants and products were optimized at the HF, MP2, and B3LYP levels of theory using the 6-31G(d) and 6-31G(d,p) basis sets. For molecules containing third row elements geometries, frequencies and thermodynamic properties were calculated using both the standard 6-31G and the Binning-Curtiss (BC6-31G) basis sets. In order to determine the performance of these basis sets, the calculated thermodynamic properties were compared to G3MP2 values and where possible to experimental values. Geometries and frequencies calculated with the standard 6-31G and the BC6-31G basis sets were found to differ significantly. Frequencies calculated with the standard 6-31G basis set were generally in better agreement with the experimental values (MAD=40.1 cm(-1) at B3LYP/6-31G(d,p) and 94.2 cm(-1) at MP2/6-31G(d,p) for unscaled frequencies and 29.6 cm(-1) and 24.4 cm(-1), respectively, for scaled frequencies). For all the reactions investigated, the thermodynamic properties calculated with the standard 6-31G basis set were found to consistently be in better agreement with the G3MP2 and the available experimental results. However, the BC6-31G basis set performs poorly for the reactions involving both second and third row elements. Since, in general, the standard 6-31G basis set performs well for all the reactions, we recommend that the standard 6-31G basis set be used for calculations involving third row elements. Using G3MP2 enthalpies of reaction and available experimental heats of formation (ΔHf), previously unknown ΔHf for CH3SeH, SiH3SeH, CH3AsH2, SiH3AsH2, CH3GeH3, and SiH3GeH3 were found to be 18.3, 18.0, 38.4, 82.4, 41.9, and 117.4 kJ mol(-1), respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...