Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Oncol ; 30(6): 934-944, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30924846

ABSTRACT

BACKGROUND: Tumor-infiltrating lymphocytes (TILs) represent a prognostic factor for survival in primary breast cancer (BC). Nonetheless, neoepitope load and TILs cytolytic activity are modest in BC, compromising the efficacy of immune-activating antibodies, which do not yet compete against immunogenic chemotherapy. PATIENTS AND METHODS: We analyzed by functional flow cytometry the immune dynamics of primary and metastatic axillary nodes [metastatic lymph nodes (mLN)] in early BC (EBC) after exposure to T-cell bispecific antibodies (TCB) bridging CD3ε and human epidermal growth factor receptor 2 (HER2) or Carcinoembryonic Antigen-Related Cell Adhesion Molecule 5 (CEACAM5), before and after chemotherapy. Human leukocyte antigen (HLA) class I loss was assessed by whole exome sequencing and immunohistochemistry. One hundred primary BC, 64 surrounding 'healthy tissue' and 24 mLN-related parameters were analyzed. RESULTS: HLA loss of heterozygosity was observed in EBC, at a clonal and subclonal level and was associated with regulatory T cells and T-cell immunoglobulin and mucin-domain-3 expression restraining the immuno-stimulatory effects of neoadjuvant chemotherapy. TCB bridging CD3ε and HER2 or CEACAM5 could bypass major histocompatibility complex (MHC) class I loss, partially rescuing T-cell functions in mLN. CONCLUSION: TCB should be developed in BC to circumvent low MHC/peptide complexes.


Subject(s)
Antibodies, Bispecific/administration & dosage , Antibodies, Bispecific/immunology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/immunology , Breast Neoplasms/therapy , Histocompatibility Antigens Class I/genetics , Lymphocytes, Tumor-Infiltrating/immunology , Biomarkers, Tumor/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Follow-Up Studies , Genetic Variation , Histocompatibility Antigens Class I/immunology , Humans , Lymph Nodes/immunology , Lymph Nodes/pathology , Lymphatic Metastasis , Neoadjuvant Therapy , Neoplasm Invasiveness , Prognosis , Prospective Studies , Receptor, ErbB-2/metabolism
2.
Cell Death Differ ; 21(1): 69-78, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23811849

ABSTRACT

Immunogenic cell death induced by anticancer chemotherapy is characterized by a series of molecular hallmarks that include the exodus of high-mobility group box 1 protein (HMGB1) from dying cells. HMGB1 is a nuclear nonhistone chromatin-binding protein. It is secreted at the late stages of cellular demise and engages Toll-like receptor4 (TLR4) on dendritic cells (DCs) to accelerate the processing of phagocytic cargo in the DC and to facilitate antigen presentation by DC to T cells. The absence of HMGB1 expression by dying tumor cells exposed to anthracyclines or oxaliplatin compromises DC-dependent T-cell priming by tumor-associated antigens. Here, we show that transplantable tumors exhibiting weak expression of nuclear HMGB1 respond to chemotherapy more effectively if the treatment is combined with the local or systemic administration of a highly purified and physiochemically defined and standardized lipopolysaccharide solution, which acts as a high-potency and exclusive TLR4 agonist, called Dendrophilin (DEN). The synergistic antitumor effects mediated by the combination of chemotherapy and immunotherapy relied upon the presence of the MyD88 (myeloid differentiation primary response gene) adapter of TLR4 (but not that of the TIR-domain-containing adapter-inducing interferon-ß adapter), in line with the well-characterized action of DEN on the MyD88 signaling pathway. DEN and anthracyclines synergized to induce intratumoral accumulation of interferon-γ-producing CD4(+) and CD8(+) T lymphocytes. Moreover, DEN could restore the immunogenicity of dying tumor cells from which HMGB1 had been depleted by RNA interference. These findings underscore the potential clinical utility of combination regimens involving immunogenic chemotherapy and certain TLR4 agonists in advanced HMGB1-deficient cancers.


Subject(s)
Cell Death/drug effects , HMGB1 Protein/metabolism , Lipopolysaccharides/pharmacology , Toll-Like Receptor 4/agonists , Animals , Anthracyclines/therapeutic use , Anthracyclines/toxicity , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/toxicity , Cell Death/immunology , Cell Line, Tumor , Drug Synergism , HMGB1 Protein/antagonists & inhibitors , HMGB1 Protein/genetics , Humans , Immunotherapy , Lipopolysaccharides/therapeutic use , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , RNA, Small Interfering/metabolism , Sarcoma/drug therapy , Sarcoma/mortality , Sarcoma/therapy , Signal Transduction , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , Th1 Cells/immunology , Th1 Cells/metabolism , Toll-Like Receptor 4/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...