Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Dalton Trans ; 52(17): 5453-5465, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36880588

ABSTRACT

Since intramolecular π-π stacking interactions can modify the geometry, crystal packing mode, or even the electronic properties of transition metal complexes, they are also likely to influence the solid-state luminescence properties. Following this concept, a new tricarbonylrhenium(I) complex (Re-BPTA) was designed, based on a simple symmetrical 5,5'-dimethyl-4,4'-diphenyl-3,3'-bi-(1,2,4-triazole) organic ligand. The complex was prepared in good yield using a three-step procedure. The crystallographic study revealed that both phenyl rings are located on the same side of the molecule, and twisted by 71° and 62°, respectively, with respect to the bi-(1,2,4-triazole) unit. They overlap significantly, although they are slipped parallel to each other to minimize the intramolecular interaction energy. The π-π stacking interaction was also revealed by 1H NMR spectroscopy, in good agreement with the results of theoretical calculations. In organic solutions, a peculiar electrochemical signature was observed compared to closely-related pyridyl-triazole (pyta)-based complexes. With regard to the optical properties, the stiffness of the Re-BPTA complex led to the stabilization of the 3MLCT state, and thus to an enhancement of the red phosphorescence emission compared to the more flexible pyta complexes. However, an increased sensitivity to quenching by oxygen appeared. In the microcrystalline phase, the Re-BPTA complex showed strong photoluminescence (PL) emission in the green-yellow wavelength range (λPL = 548 nm, ΦPL = 0.52, 〈τPL〉 = 713 ns), and thus a dramatic solid-state luminescence enhancement (SLE) effect. These attractive emission properties can be attributed to the fact that the molecule undergoes little distortion between the ground state and the triplet excited state, as well as to a favorable intermolecular arrangement that minimizes detrimental interactions in the crystal lattice. The aggregation-induced phosphorescence emission (AIPE) effect was clear, with a 7-fold increase in emission intensity at 546 nm, although the aggregates formed in aqueous medium were much less emissive than the native microcrystalline powder. In this work, the rigidity of the Re-BPTA complex is reinforced by the intramolecular π-π stacking interaction of the phenyl rings. This original concept provides a rhenium tricarbonyl compound with very good SLE properties, and could be used more widely to successfully develop this area of research.

2.
Photochem Photobiol Sci ; 22(1): 169-184, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36178667

ABSTRACT

Tricarbonylrhenium(I) complexes that incorporate a chloride ligand are promising photoluminescent materials, but those incorporating a bromide or iodide ligand have received very little attention regarding their solid-state properties. In this work, three rhenium(I) complexes differing only by the nature of their halide ligand (X = Cl, Br, and I) were compared. They are based on a fac-[ReX(CO)3(N^N)] framework where the N^N bidentate ligand is a 3-(2-pyridyl)-1,2,4-triazole unit functionalized by an appended phenyl group. DFT calculations showed that the character of the lowest energy transitions progressively changes from Re → N^N ligand (MLCT) to X → N^N ligand (XLCT) when increasing the size of the halogen atom. Regarding the electrochemical behavior, the chloride and bromide complexes 1-Cl and 1-Br were similar, while the iodide complex 1-I exhibited a strikingly different electrochemical signature in oxidation. From a spectroscopic viewpoint, all three complexes emitted weak red-orange phosphorescence in dichloromethane solution. However, in the solid state, marked differences appeared. Not only was 1-Cl a good emitter of yellow light, but it had strong solid-state luminescence enhancement (SLE) properties. In comparison, 1-Br and 1-I were less emissive and they showed better mechanoresponsive luminescence (MRL) properties, probably related to a loose molecular arrangement in the crystal packing and to the opening of vibrational non-radiative deactivation pathways. This study highlights for the first time how the nature of the halide ligand in this type of complex allows fine tuning of the solid-state optical properties, for potential applications either in bio-imaging or in the field of MRL-active materials.


Subject(s)
Bromides , Luminescence , Models, Molecular , Ligands , Chlorides , Iodides , Halogens
3.
Acta Crystallogr E Crystallogr Commun ; 77(Pt 11): 1078-1081, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34868639

ABSTRACT

The title compound, C9H7NO3, crystallizes in the monoclinic (P21) space group. In the crystal, the almost planar mol-ecules display a flattened herringbone arrangement. Stacking mol-ecules are slipped in the lengthwise and widthwise directions and are linked by π-π inter-actions [d(Cg⋯Cg = 3.6640 (11) Å]. The structure is characterized by strong C-H⋯N and weak C-H⋯O hydrogen bonds, and further stabilized by C-O⋯π inter-actions.

4.
Dalton Trans ; 50(39): 13686-13698, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34523629

ABSTRACT

Strongly luminescent tricarbonylrhenium(I) complexes are promising candidates in the field of optical materials. In this study, three new complexes bearing a 3-(2-pyridyl)-1,2,4-triazole (pyta) bidentate ligand with an appended phenyl group were obtained in very good yields owing to an optimized synthetic procedure. The first member of this series, i.e. complex 1, was compared with the previously studied complex RePBO to understand the influence of the fluorescent benzoxazole unit grafted on the phenyl ring. Then, to gauge the effect of steric hindrance on the luminescence properties, the phenyl group of complex 1 was substituted in the para position by a bulky tert-butyl group or an adamantyl moiety, affording complexes 2 and 3, respectively. The results of theoretical calculations indicated that these complexes were quite similar from an electronic point of view, as evidenced by the electrochemical study. In dichloromethane solution, under excitation in the UV range, all the complexes emitted weak phosphorescence in the red region. In the solid state, they could be excited in the blue region of the visible spectrum and they emitted strong yellow light. The photoluminescence quantum yield was markedly increased with raising the size of the substituent, passing from 0.42 for 1 to 0.59 for 3. The latter complex also exhibited clear waveguiding properties, unprecedented for rhenium complexes. From this point of view, these easy-synthesized and spectroscopically attractive complexes constitute a new generation of emitters for use in imaging applications and functional materials. However, the comparison with RePBO showed that the presence of the benzoxazole group leads to unsurpassed mechanoresponsive luminescence (MRL) properties, due to the involvement of a unique photophysical mechanism that takes place only in this type of complex.


Subject(s)
Rhenium
5.
Dalton Trans ; 50(4): 1313-1323, 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33404562

ABSTRACT

Precise control over the production of carbon monoxide (CO) is essential to exploit the therapeutic potential of this molecule. The development of photoactive CO-releasing molecules (PhotoCORMs) is therefore a promising route for future clinical applications. Herein, a tricarbonyl-rhenium(i) complex (1-TPP), which incorporates a phosphine moiety as ancilliary ligand for boosting the photochemical reactivity, and a pyridyltriazole bidentate ligand with appended 2-phenylbenzoxazole moiety for the purpose of photoluminescence, was synthesized and characterized from a chemical and crystallographic point of view. Upon irradiation in the near-UV range, complex 1-TPP underwent fast photoreaction, which was monitored through changes of the UV-vis absorption and phosphorescence spectra. The photoproducts (i.e. the dicarbonyl solvento complex 2 and one CO molecule) were identified using FTIR, 1H NMR and HRMS. The results were interpreted on the basis of DFT/TD-DFT calculations. The effective photochemical release of CO associated with clear optical variations (the emitted light passed from green to orange-red) could make 1-TPP the prototype of new photochemically-active agents, potentially useful for integration in photoCORM materials.


Subject(s)
Carbon Monoxide/chemistry , Coordination Complexes/chemistry , Luminescent Agents/chemistry , Phosphines/chemistry , Rhenium/chemistry , Triazoles/chemistry , Coordination Complexes/chemical synthesis , Density Functional Theory , Ligands , Luminescent Agents/chemical synthesis , Models, Molecular , Molecular Structure , Photochemical Processes
6.
Chemistry ; 27(12): 4191-4196, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33300648

ABSTRACT

Mechanoresponsive luminescence (MRL) materials promise smart devices for sensing, optoelectronics and security. We present here the first report on the MRL activity of two ReI complexes, opening up new opportunities for applications in these fields. Both complexes exhibit marked solid-state luminescence enhancement (SLE). Furthermore, the pristine microcrystalline powders emit in the yellow-green region, and grinding led to an amorphous phase with concomitant emission redshift and shrinking of the photoluminescence (PL) quantum yields and lifetimes. Quantum chemical calculations revealed the existence of two low-lying triplet excited states with very similar energy levels, that is, 3 IL and 3 MLCT, having, respectively, almost pure intraligand (IL) and metal-to-ligand charge-transfer (MLCT) character. Transition between these states could be promoted by rotation around the pyridyltriazole-phenylbenzoxazole bond. In the microcrystals, in which rotations are hindered, the 3 IL state induces the prominent PL emission at short wavelengths. Upon grinding, rotation is facilitated and the transition to the 3 MLCT state results in a larger proportion of long-wavelength PL. FTIR and variable-temperature PL spectroscopy showed that the opening of the vibrational modes favours non-radiative deactivation of the triplet states in the amorphous phase. In solution, PL only arises from the 3 MLCT state. The same mechanism accounts for the spectroscopic differences observed when passing from crystals to amorphous powders, and then to solutions, thereby clarifying the link between SLE and MRL for these complexes.

7.
Dalton Trans ; 48(42): 15906-15916, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31441474

ABSTRACT

In order to improve the remarkable performance of a mononuclear tricarbonyl rhenium(i) complex (ReL1) that exhibits rare aggregation-induced phosphorescence enhancement (AIPE) behavior, two new complexes (ReL3 and ReL4) were prepared and investigated. They incorporate a 2-pyridyl-1,2,4-triazole (pyta) ligand connected to a 2-phenylbenzoxazole (PBO) moiety. Complex ReL3 differs from ReL1 by the presence of a bulky tert-butyl substituent, and ReL4 is an isomer where the PBO group is linked to the pyta ligand by its phenyl group. Theoretical calculations were in congruence with electrochemical and spectroscopic properties in solutions. Both new compounds exhibited strong AIPE and much better solid-state emission efficiency than ReL1, with photoluminescence quantum yields up to 55% for ReL4. Crystallographic data indicate that this increase in emission efficiency is due to optimum packing that prevents quenching. This work shows that minor structural changes may have major effects upon the solid-state spectroscopic properties and it provides a rational basis for accessing AIPE-active strongly emissive rhenium(i) complexes.

SELECTION OF CITATIONS
SEARCH DETAIL
...