Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 61(30): e202205399, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35502469

ABSTRACT

The growth of (semi-)metal clusters is pivotal for nucleation processes in gaseous and condensed phases. We now report the isolation of intermediates during the expansion of a stable unsaturated silicon cluster (siliconoid) by a single germanium atom through a sequence of substitution, rearrangement and reduction. The reaction of ligato-lithiated hexasilabenzpolarene LiSi6 Tip5 (1Li⋅(thf)2 , Tip=2,4,6-triisopropylphenyl) with GeCl2 ⋅NHC (NHC=1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene) initially yields the product with exohedral germanium(II) functionality, which then inserts into an Si-Si bond of the Si6 scaffold. The concomitant transfer of the chloro functionality from germanium to an adjacent silicon preserves the electron-precise nature of the formed endohedral germylene. Full incorporation of the germanium heteroatom to the Si6 Ge cluster core is finally achieved either by reduction under loss of the coordinating NHC or directly by reaction of 1Li⋅(thf)2 with GeCl2 ⋅1,4-dioxane.

2.
Chem Commun (Camb) ; 56(74): 10898-10901, 2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32940284

ABSTRACT

Reaction of a silylene-functionalized Si6 siliconoid with CO in the presence of catalytic quantities of a nickel(0) complex results in the complete cleavage of the CO triple bond, but preserves the Si6 scaffold with an exohedrally incorporated Si[double bond, length as m-dash]C enol ether bridge. The uncompromised cluster core emphasizes the role of the so-called benzpolarene motif as the energetic silicon pendants of benzene in carbon chemistry.

3.
Chemistry ; 26(70): 16599-16602, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32700779

ABSTRACT

Reactions of silylenes with heavier chalcogens (E) typically result in Si=E double bonds or their π-addition products. In contrast, the oxidation of a silylene-functionalized unsaturated silicon cluster (siliconoid) with Group 16 elements selectively yields cluster expanded siliconoids Si7 E (E=S, Se, Te) fully preserving the unsaturated nature of the cluster scaffold as evident from the NMR signatures of the products. Mechanistic considerations by DFT calculations suggest the intermediacy of a Si6 siliconoid with exohedral Si=E functionality. The reaction thus may serve as model system for the oxidation of surface-bonded silylenes at Si(100) by chalcogens and their diffusion into the silicon bulk.

4.
Angew Chem Int Ed Engl ; 59(22): 8532-8536, 2020 May 25.
Article in English | MEDLINE | ID: mdl-32092221

ABSTRACT

Unsaturated charge-neutral silicon clusters (siliconoids) are important as gas-phase intermediates between molecules and the elemental bulk. With stable zirconocene- and hafnocene-substituted derivatives, we here report the first examples containing directly bonded transition-metal fragments that are readily accessible from the ligato-lithiated Si6 siliconoid (1Li) and Cp2 MCl2 (M=Zr, Hf). Charge-neutral siliconoid ligands with pending tetrylene functionality were prepared by the reaction of amidinato chloro tetrylenes [PhC(NtBu)2 ]ECl (E=Si, Ge, Sn) with 1Li, thus confirming the principal compatibility of such low-valent functionalities with the unsaturated Si6 cluster scaffold. The pronounced donor properties of the tetrylene/siliconoid hybrids allow for their coordination to the Fe(CO)4 fragment.

5.
Chem Sci ; 11(30): 7782-7788, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-34094151

ABSTRACT

Taking advantage of pendant tetrylene side-arms, stable unsaturated Si6 silicon clusters (siliconoids) with the benzpolarene motif (the energetic counterpart of benzene in silicon chemistry) are successfully employed as ligands towards Group 9 metals. The pronounced σ-donating properties of the tetrylene moieties allow for sequential oxidative addition and reductive elimination events without complete dissociation of the ligand at any stage. In this manner, either covalently linked or core-expanded metallasiliconoids are obtained. [Rh(CO)2Cl]2 inserts into an endohedral Si-Si bond of the silylene-functionalized hexasilabenzpolarene leading to an unprecedented coordination sphere of the Rh centre with five silicon atoms in the initial product, which is subsequentially converted to a simpler derivative under reconstruction of the Si6 benzpolarene motif. In the case of [Ir(cod)Cl]2 (cod = 1,5-cyclooctadiene) a similar Si-Si insertion leads to the contraction of the Si6 cluster core with concomitant transfer of a chlorine atom to a silicon vertex generating an exohedral chlorosilyl group. Metallasiliconoids are employed in the isomerization of terminal alkenes to 2-alkenes as a catalytic benchmark reaction, which proceeds with competitive selectivities and reaction rates in the case of iridium complexes.

6.
Chem Sci ; 10(16): 4523-4530, 2019 Apr 28.
Article in English | MEDLINE | ID: mdl-31057782

ABSTRACT

The recent progress in the synthesis of partially substituted neutral silicon clusters (siliconoids) revealed unique structures and electronic anisotropies that are reminiscent of bulk and nano surfaces of silicon. Here, we report the selective 2-lithiation of the global minimum Si6R6 siliconoid at a different vertex than in the previously reported isomeric 4-lithiated derivative (R = 2,4,6- i Pr3C6H2). In order to enable an intuitive distinction of the vertices of the global minimum Si6R6 scaffold (which can be considered the silicon analogue of benzene in terms of thermodynamic stability), we introduce a novel nomenclature in analogy to the ortho-meta-para nomenclature of disubstituted benzenes. By treatment of the 2-lithiated Si6 cluster with Me3SiCl, SiCl4 H3B·SMe2, (Me2N)2PCl as well as with carboxylic acid chlorides RCOCl (R = t Bu, Ph) various 2-functionalized Si6 clusters were obtained and characterized in solution and - in most cases - the solid state. The structural and spectroscopic effect of the position of the newly introduced functional group is discussed by comparison to the corresponding 4-functionalized derivatives.

SELECTION OF CITATIONS
SEARCH DETAIL
...