Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Aquat Toxicol ; 191: 73-84, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28804037

ABSTRACT

Cadmium (Cd) is a naturally occurring trace metal that is widely considered to be highly toxic to aquatic organisms and a significant health hazard to humans (Amzal et al., 2009; Bernhoft 2013; Burger, 2008; Satarug et al., 2009). The zebrafish (Danio rerio) has been used as a model organism for toxicological studies with Cd (Banni et al., 2011; Blechinger et al., 2007; Chow et al., 2009; Chow et al., 2008; Favorito et al., 2011; Kusch et al., 2007; Matz et al., 2007; Wang and Gallagher, 2013). We asked what the lasting longitudinal effects would be from short early developmental Cd exposure (between 24 and 96h post-fertilization) in a range that larvae might experience living atop typical Cd-containing surface sediments (0, 0.01, 0.1, 1.0 and 10µM CdCl2: 1.124, 11.24, 112.4 and 1124µg Cd/L). The goal of this exposure window was to specifically target secondary neurogenesis, monoaminergic differentiation and cardiovascular development, without affecting earlier patterning processes. Developmental abnormalities in body size and CNS morphology increased with concentration, but were statistically significant only at the highest concentration used (10µM). Heart rate for Cd-treated larvae increased with concentration, and was significant even at the lowest concentration used (0.01µM). Longitudinal survival was significantly lower for fish developmentally exposed to the highest concentration. Except for brain weight, overall morphology was not affected by developmental Cd exposure. However, developmental exposure to lower concentrations of Cd (0.01, 0.1, and 1.0µM) progressively lowered cocaine-induced conditioned place preference (CPP), used to measure function of the reward pathways in the brain. Baseline heart rate was significantly lower in longitudinal fish developmentally exposed to 1.0µM Cd. Cardiovascular response to isoproterenol, a potent ß-adrenergic agonist, in longitudinal adults was also significantly affected by developmental exposure to Cd at low doses (0.01, 0.1 and 1.0µM). Surviving longitudinal adult fish exposed to the highest concentration of Cd showed normal CPP and cardiovascular physiology. The data imply that even lower exposure concentrations can potentially result in fitness-affecting parameters without affecting survival in a laboratory setting.


Subject(s)
Cadmium/toxicity , Cardiovascular Physiological Phenomena/drug effects , Embryo, Nonmammalian/drug effects , Homing Behavior/drug effects , Water Pollutants, Chemical/toxicity , Zebrafish/physiology , Animals , Cocaine/pharmacology , Conditioning, Classical/drug effects , Dose-Response Relationship, Drug , Embryo, Nonmammalian/physiology , Larva/drug effects , Zebrafish/embryology
2.
Int J Mol Sci ; 17(6)2016 May 31.
Article in English | MEDLINE | ID: mdl-27258254

ABSTRACT

A sizeable portion of the societal drain from cocaine abuse results from the complications of in utero drug exposure. Because of challenges in using humans and mammalian model organisms as test subjects, much debate remains about the impact of in utero cocaine exposure. Zebrafish offer a number of advantages as a model in longitudinal toxicology studies and are quite sensitive physiologically and behaviorally to cocaine. In this study, we have used zebrafish to model the effects of embryonic pre-exposure to cocaine on development and on subsequent cardiovascular physiology and cocaine-induced conditioned place preference (CPP) in longitudinal adults. Larval fish showed a progressive decrease in telencephalic size with increased doses of cocaine. These treated larvae also showed a dose dependent response in heart rate that persisted 24 h after drug cessation. Embryonic cocaine exposure had little effect on overall health of longitudinal adults, but subtle changes in cardiovascular physiology were seen including decreased sensitivity to isoproterenol and increased sensitivity to cocaine. These longitudinal adult fish also showed an embryonic dose-dependent change in CPP behavior, suggesting an increased sensitivity. These studies clearly show that pre-exposure during embryonic development affects subsequent cocaine sensitivity in longitudinal adults.


Subject(s)
Behavior, Animal/drug effects , Cardiovascular Physiological Phenomena/drug effects , Cocaine/toxicity , Zebrafish/embryology , Animals , Dose-Response Relationship, Drug , Embryo, Nonmammalian/drug effects
3.
Article in English | MEDLINE | ID: mdl-25847362

ABSTRACT

Zebrafish (Danio rerio) have been used as a model organism to explore the genetic basis for responsiveness to addictive drugs like cocaine. However, very little is known about how the physiological response to cocaine is mediated in zebrafish. In the present study electrocardiograms (ECGs) were recorded from adult zebrafish treated with cocaine. Treatment with cocaine resulted in a bell-shaped dose response curve with a maximal change in heart rate seen using 5mg/L cocaine. Higher doses resulted in a higher percentage of fish showing bradycardia. The cocaine-induced tachycardia was blocked by co-treatment with propranolol, a ß-adrenergic antagonist, but potentiated by co-treatment with phentolamine, an α-adrenergic antagonist. Co-treatment with atropine, a classic cholinergic antagonist, had no effect on cocaine-induced tachycardia. Cocaine treatment of adult fish changed the ECG of treated fish, inducing a dose-dependent increase in QT interval after adjusting for heart rate (QTc), while not affecting the PR or QRS intervals. The acute effects of cocaine on heart rate were examined in 5-day old embryos to see if zebrafish might serve as a suitable model organism to study possible links of embryonic physiological response to subsequent adult behavioral response to the drug. Cocaine treatment of 5-day old zebrafish embryos also resulted in a bell-shaped dose response curve, with maximal tachycardia achieved with 10mg/L. The response in embryonic fish was thus comparable to that in adults and raises the possibility that the effects of embryonic exposure to cocaine on the developing cardiovascular system can be effectively modeled in zebrafish.


Subject(s)
Cocaine/toxicity , Dopamine Uptake Inhibitors/toxicity , Electrocardiography/drug effects , Heart Rate/drug effects , Animals , Embryo, Nonmammalian/drug effects , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...