Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nutr Res ; 126: 99-122, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38669850

ABSTRACT

Bovine dairy milk is a nutrient-rich matrix, but consumption of full-fat dairy food varieties has been claimed historically to be associated with poorer cardiometabolic health, a notion often attributed to the saturated fat content. However, continued investigation that includes observational studies and randomized controlled trials (RCTs) provide evidence that favorably supports full-fat dairy foods and their bioactive components on cardiometabolic health. This review addresses this controversy by examining the evidence surrounding full-fat dairy foods and their implications for human health. Dairy foods are heterogeneous, not just in their fat content but also in other compositional aspects within and between fermented (e.g., yogurt, cheese) and nonfermented products (e.g., milk) that could differentially influence cardiometabolic health. Drawing from complementary lines of evidence from epidemiological studies and RCTs, this review describes the health effects of dairy foods regarding their fat content, as well as their polar lipids that are concentrated in the milk fat globule fraction. Observational studies have limitedly supported the consumption of full-fat dairy to protect against cardiometabolic disorders. However, this framework has been disputed by RCTs indicating that dairy foods, regardless of their fat content or fermentation, are not detrimental to cardiometabolic health and may instead alleviate certain cardiometabolic risk factors. As dietary recommendations evolve, which currently indicate to avoid full-fat dairy foods, it is essential to consider the totality of evidence, especially from RCTs, while also recognizing that investigation is needed to evaluate the complexity of dairy foods within diverse dietary patterns and their impacts on cardiometabolic health.

2.
Nutr Res ; 124: 94-110, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430822

ABSTRACT

Anti-inflammatory activities of catechin-rich green tea extract (GTE) in obese rodents protect against metabolic endotoxemia by decreasing intestinal permeability and absorption of gut-derived endotoxin. However, translation to human health has not been established. We hypothesized that GTE would reduce endotoxemia by decreasing gut permeability and intestinal and systemic inflammation in persons with metabolic syndrome (MetS) compared with healthy persons. A randomized, double-blind, placebo-controlled, crossover trial in healthy adults (n = 19, 34 ± 2 years) and adults with MetS (n = 21, 40 ± 3 years) examined 4-week administration of a decaffeinated GTE confection (890 mg/d total catechins) on serum endotoxin, intestinal permeability, gut and systemic inflammation, and cardiometabolic parameters. Compared with the placebo, the GTE confection decreased serum endotoxin (P = .023) in both healthy persons and those with MetS, while increasing concentrations of circulating catechins (P < .0001) and γ-valerolactones (P = .0001). Fecal calprotectin (P = .029) and myeloperoxidase (P = .048) concentrations were decreased by GTE regardless of health status. Following the ingestion of gut permeability probes, urinary lactose/mannitol (P = .043) but not sucralose/erythritol (P > .05) was decreased by GTE regardless of health status. No between-treatment differences (P > .05) were observed for plasma aminotransferases, blood pressure, plasma lipids, or body mass nor were plasma tumor necrosis factor-α, interleukin-6, or the ratio of lipopolysaccharide-binding protein/soluble cluster of differentiation-14 affected. However, fasting glucose in both study groups was decreased (P = .029) by the GTE confection compared with within-treatment arm baseline concentrations. These findings demonstrate that catechin-rich GTE is effective to decrease circulating endotoxin and improve glycemic control in healthy adults and those with MetS, likely by reducing gut inflammation and small intestinal permeability but without affecting systemic inflammation.


Subject(s)
Acute-Phase Proteins , Blood Glucose , Carrier Proteins , Catechin , Cross-Over Studies , Endotoxins , Inflammation , Membrane Glycoproteins , Metabolic Syndrome , Permeability , Plant Extracts , Tea , Humans , Metabolic Syndrome/drug therapy , Double-Blind Method , Endotoxins/blood , Adult , Male , Female , Plant Extracts/pharmacology , Tea/chemistry , Catechin/pharmacology , Catechin/analogs & derivatives , Catechin/administration & dosage , Inflammation/drug therapy , Inflammation/blood , Blood Glucose/metabolism , Blood Glucose/drug effects , Endotoxemia/drug therapy , Fasting , Middle Aged , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Camellia sinensis/chemistry
3.
Nutrients ; 15(14)2023 Jul 23.
Article in English | MEDLINE | ID: mdl-37513677

ABSTRACT

Full-fat dairy milk may protect against cardiometabolic disorders, due to the milk fat globule membrane (MFGM), through anti-inflammatory and gut-health-promoting activities. We hypothesized that a MFGM-enriched milk beverage (MEB) would alleviate metabolic endotoxemia in metabolic syndrome (MetS) persons by improving gut barrier function and glucose tolerance. In a randomized crossover trial, MetS persons consumed for two-week period a controlled diet with MEB (2.3 g/d milk phospholipids) or a comparator beverage (COMP) formulated with soy phospholipid and palm/coconut oil. They then provided fasting blood and completed a high-fat/high-carbohydrate test meal challenge for evaluating postprandial metabolism and intestinal permeability. Participants had no adverse effects and achieved high compliance, and there were no between-trial differences in dietary intakes. Compared with COMP, fasting endotoxin, glucose, incretins, and triglyceride were unaffected by MEB. The meal challenge increased postprandial endotoxin, triglyceride, and incretins, but were unaffected by MEB. Insulin sensitivity; fecal calprotectin, myeloperoxidase, and short-chain fatty acids; and small intestinal and colonic permeability were also unaffected by MEB. This short-term study demonstrates that controlled administration of MEB in MetS persons does not affect gut barrier function, glucose tolerance, and other cardiometabolic health biomarkers, which contradicts observational evidence that full-fat milk heightens cardiometabolic risk. Registered at ClinicalTrials.gov (NCT03860584).


Subject(s)
Cardiovascular Diseases , Endotoxemia , Metabolic Syndrome , Adult , Humans , Animals , Lecithins , Incretins , Cross-Over Studies , Triglycerides , Milk , Phospholipids , Biomarkers , Endotoxins , Glucose , Cardiovascular Diseases/etiology
4.
Nutrients ; 14(8)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35458108

ABSTRACT

Poor diet quality influences cardiometabolic risk. Although potatoes are suggested to adversely affect cardiometabolic health, controlled trials that can establish causality are limited. Consistent with potatoes being rich in micronutrients and resistant starch, we hypothesized that their inclusion in a Dietary Guidelines for Americans (DGA)-based dietary pattern would improve cardiometabolic and gut health in metabolic syndrome (MetS) persons. In a randomized cross-over trial, MetS persons (n = 27; 32.5 ± 1.3 year) consumed a DGA-based diet for 2 weeks containing potatoes (DGA + POTATO; 17.5 g/day resistant starch) or bagels (DGA + BAGEL; 0 g/day resistant starch) prior to completing oral glucose and gut permeability tests. Blood pressure, fasting glucose and insulin, and insulin resistance decreased (p < 0.05) from baseline regardless of treatment without any change in body mass. Oral glucose-induced changes in brachial artery flow-mediated dilation, nitric oxide homeostasis, and lipid peroxidation did not differ between treatment arms. Serum endotoxin AUC0−120 min and urinary lactulose/mannitol, but not urinary sucralose/erythritol, were lower in DGA + POTATO. Fecal microbiome showed limited between-treatment differences, but the proportion of acetate was higher in DGA + POTATO. Thus, short-term consumption of a DGA-based diet decreases cardiometabolic risk, and the incorporation of resistant starch-containing potatoes into a healthy diet reduces small intestinal permeability and postprandial endotoxemia.


Subject(s)
Cardiovascular Diseases , Metabolic Syndrome , Solanum tuberosum , Adult , Blood Glucose/metabolism , Glucose , Humans , Nutrition Policy , Overweight , Permeability , Resistant Starch , Solanum tuberosum/metabolism
5.
Nutr Rev ; 79(Suppl 2): 16-35, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34879146

ABSTRACT

Low-quality dietary patterns impair cardiometabolic health by increasing the risk of obesity-related disorders. Cardiometabolic risk relative to dairy-food consumption continues to be a controversial topic, due to recommendations that endorse low-fat and nonfat dairy foods over full-fat varieties despite accumulated evidence that does not strongly support these recommendations. Controlled human studies and mechanistic preclinical investigations support that full-fat dairy foods decrease cardiometabolic risk by promoting gut health, reducing inflammation, and managing dyslipidemia. These gut- and systemic-level cardiometabolic benefits are attributed, at least in part, to milk polar lipids (MPLs) derived from the phospholipid- and sphingolipid-rich milk fat globule membrane that is of higher abundance in full-fat dairy milk. The controversy surrounding full-fat dairy food consumption is discussed in this review relative to cardiometabolic health and MPL bioactivities that alleviate dyslipidemia, shift gut microbiota composition, and reduce inflammation. This summary, therefore, is expected to advance the understanding of full-fat dairy foods through their MPLs and the need for translational research to establish evidence-based dietary recommendations.


Subject(s)
Cardiovascular Diseases , Dyslipidemias , Gastrointestinal Microbiome , Animals , Cardiovascular Diseases/prevention & control , Dairy Products , Diet, Fat-Restricted , Dyslipidemias/prevention & control , Humans , Milk
SELECTION OF CITATIONS
SEARCH DETAIL
...