Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(5): e0302129, 2024.
Article in English | MEDLINE | ID: mdl-38753705

ABSTRACT

Emerging technologies focused on the detection and quantification of circulating tumor DNA (ctDNA) in blood show extensive potential for managing patient treatment decisions, informing risk of recurrence, and predicting response to therapy. Currently available tissue-informed approaches are often limited by the need for additional sequencing of normal tissue or peripheral mononuclear cells to identify non-tumor-derived alterations while tissue-naïve approaches are often limited in sensitivity. Here we present the analytical validation for a novel ctDNA monitoring assay, FoundationOne®Tracker. The assay utilizes somatic alterations from comprehensive genomic profiling (CGP) of tumor tissue. A novel algorithm identifies monitorable alterations with a high probability of being somatic and computationally filters non-tumor-derived alterations such as germline or clonal hematopoiesis variants without the need for sequencing of additional samples. Monitorable alterations identified from tissue CGP are then quantified in blood using a multiplex polymerase chain reaction assay based on the validated SignateraTM assay. The analytical specificity of the plasma workflow is shown to be 99.6% at the sample level. Analytical sensitivity is shown to be >97.3% at ≥5 mean tumor molecules per mL of plasma (MTM/mL) when tested with the most conservative configuration using only two monitorable alterations. The assay also demonstrates high analytical accuracy when compared to liquid biopsy-based CGP as well as high qualitative (measured 100% PPA) and quantitative precision (<11.2% coefficient of variation).


Subject(s)
Circulating Tumor DNA , Neoplasms , Humans , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Neoplasms/genetics , Neoplasms/blood , Neoplasms/diagnosis , Genomics/methods , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Sensitivity and Specificity , Algorithms , Multiplex Polymerase Chain Reaction/methods , Liquid Biopsy/methods
2.
Front Med (Lausanne) ; 7: 112, 2020.
Article in English | MEDLINE | ID: mdl-32373614

ABSTRACT

Lung regeneration occurs in a variety of adult mammals after surgical removal of one lung (pneumonectomy). Previous studies of murine post-pneumonectomy lung growth have identified regenerative "hotspots" in subpleural alveolar ducts; however, the cell-types participating in this process remain unclear. To identify the single cells participating in post-pneumonectomy lung growth, we used laser microdissection, enzymatic digestion and microfluidic isolation. Single-cell transcriptional analysis of the murine alveolar duct cells was performed using the C1 integrated fluidic circuit (Fluidigm) and a custom PCR panel designed for lung growth and repair genes. The multi-dimensional data set was analyzed using visualization software based on the tSNE algorithm. The analysis identified 6 cell clusters; 1 cell cluster was present only after pneumonectomy. This post-pneumonectomy cluster was significantly less transcriptionally active than 3 other clusters and may represent a transitional cell population. A provisional cluster identity for 4 of the 6 cell clusters was obtained by embedding bulk transcriptional data into the tSNE analysis. The transcriptional pattern of the 6 clusters was further analyzed for genes associated with lung repair, matrix production, and angiogenesis. The data demonstrated that multiple cell-types (clusters) transcribed genes linked to these basic functions. We conclude that the coordinated gene expression across multiple cell clusters is likely a response to a shared regenerative microenvironment within the subpleural alveolar ducts.

3.
Cell Syst ; 7(3): 258-268.e3, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30195438

ABSTRACT

Cellular reprogramming through manipulation of defined factors holds great promise for large-scale production of cell types needed for use in therapy and for revealing principles of gene regulation. However, most reprogramming systems are inefficient, converting only a fraction of cells to the desired state. Here, we analyze MYOD-mediated reprogramming of human fibroblasts to myotubes, a well-characterized model system for direct conversion by defined factors, at pseudotemporal resolution using single-cell RNA-seq. To expose barriers to efficient conversion, we introduce a novel analytic technique, trajectory alignment, which enables quantitative comparison of gene expression kinetics across two biological processes. Reprogrammed cells navigate a trajectory with branch points that correspond to two alternative decision points, with cells that select incorrect branches terminating at aberrant or incomplete reprogramming outcomes. Analysis of these branch points revealed insulin and BMP signaling as crucial molecular determinants of reprogramming. Single-cell trajectory alignment enables rigorous quantitative comparisons between biological trajectories found in diverse processes in development, reprogramming, and other contexts.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Cellular Reprogramming , Fibroblasts/physiology , Insulin/metabolism , Muscle Fibers, Skeletal/physiology , Bone Morphogenetic Proteins/genetics , Cell Differentiation , Cells, Cultured , Computer Simulation , Gene Expression Profiling , Humans , Insulin/genetics , Muscle Development , Regenerative Medicine , Sequence Analysis, RNA , Signal Transduction , Single-Cell Analysis
4.
Am J Physiol Lung Cell Mol Physiol ; 312(1): L79-L88, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27836901

ABSTRACT

In many mammals, including humans, removal of one lung (pneumonectomy) results in the compensatory growth of the remaining lung. Compensatory growth involves not only an increase in lung size, but also an increase in the number of alveoli in the peripheral lung; however, the process of compensatory neoalveolarization remains poorly understood. Here, we show that the expression of α-smooth muscle actin (SMA)-a cytoplasmic protein characteristic of myofibroblasts-is induced in the pleura following pneumonectomy. SMA induction appears to be dependent on pleural deformation (stretch) as induction is prevented by plombage or phrenic nerve transection (P < 0.001). Within 3 days of pneumonectomy, the frequency of SMA+ cells in subpleural alveolar ducts was significantly increased (P < 0.01). To determine the functional activity of these SMA+ cells, we isolated regenerating alveolar ducts by laser microdissection and analyzed individual cells using microfluidic single-cell quantitative PCR. Single cells expressing the SMA (Acta2) gene demonstrated significantly greater transcriptional activity than endothelial cells or other discrete cell populations in the alveolar duct (P < 0.05). The transcriptional activity of the Acta2+ cells, including expression of TGF signaling as well as repair-related genes, suggests that these myofibroblast-like cells contribute to compensatory lung growth.


Subject(s)
Lung/growth & development , Myofibroblasts/metabolism , Myofibroblasts/pathology , Stress, Mechanical , Actins/metabolism , Animals , Cell Separation , Gene Expression Regulation, Developmental , Image Cytometry , Lung/metabolism , Lung/surgery , Male , Mice, Inbred C57BL , Pneumonectomy , Polymerase Chain Reaction , Single-Cell Analysis , Transcription, Genetic
5.
Nat Biotechnol ; 32(4): 381-386, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24658644

ABSTRACT

Defining the transcriptional dynamics of a temporal process such as cell differentiation is challenging owing to the high variability in gene expression between individual cells. Time-series gene expression analyses of bulk cells have difficulty distinguishing early and late phases of a transcriptional cascade or identifying rare subpopulations of cells, and single-cell proteomic methods rely on a priori knowledge of key distinguishing markers. Here we describe Monocle, an unsupervised algorithm that increases the temporal resolution of transcriptome dynamics using single-cell RNA-Seq data collected at multiple time points. Applied to the differentiation of primary human myoblasts, Monocle revealed switch-like changes in expression of key regulatory factors, sequential waves of gene regulation, and expression of regulators that were not known to act in differentiation. We validated some of these predicted regulators in a loss-of function screen. Monocle can in principle be used to recover single-cell gene expression kinetics from a wide array of cellular processes, including differentiation, proliferation and oncogenic transformation.


Subject(s)
Cell Differentiation , Gene Expression Regulation , Transcriptome , Algorithms , Cell Differentiation/genetics , Cell Differentiation/physiology , Cells, Cultured , Gene Expression Profiling/methods , Gene Expression Regulation/genetics , Gene Expression Regulation/physiology , Genomics , Humans , Muscle Development/genetics , Muscle Development/physiology , Myoblasts/metabolism , Reproducibility of Results , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome/genetics , Transcriptome/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...