Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
3.
Sci Rep ; 11(1): 22125, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34764393

ABSTRACT

To release more flexibility for users to charge their portable devices, researchers have increasingly developed compact wireless power transfer (WPT) systems in recent years. Also, a dual-band WPT system is proposed to transfer power and signal simultaneously, enriching the system's functionality. Moreover, a stacked metasurface has recently been proposed for a single band near-field WPT system. In this study, a novel multimode self-resonance-enhanced wideband metasurface is proposed for a robust dual-band WPT system, which significantly improves the performance of both bands. The size of the transmitter (Tx) and the receiver (Rx) are both 15 mm × 15 mm only. The proposed metasurface can improve efficiency from 0.04 up to 39% in the best case. The measured figure of merit (FoM) is 2.09 at 390 MHz and 2.16 at 770 MHz, respectively, in the balanced mode. Especially, the FoM can reach up to 4.34 in the lower mode. Compared to the previous state-of-the-art for similar applications, the WPT performance has significantly been improved.

4.
Sci Rep ; 11(1): 19941, 2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34620943

ABSTRACT

Generally, a conventional voltage doubler circuit possesses a large variation of its input impedance over the bandwidth, which results in limited bandwidth and low RF-dc conversion efficiency. A basic aspect for designing wideband voltage doubler rectifiers is the use of complex matching circuits to achieve decade and octave impedance and RF-dc conversion efficiency bandwidths. Still, the reported techniques till now have been accompanied by a large fluctuation of the RF-dc conversion efficiency over the operating bandwidth. In this paper, we propose a novel rectification circuit with minimal inter-stage matching that consists of a single short-circuit stub and a virtual battery, which contributes negligible losses and overcomes these existing problems. Consequently, the proposed rectifier circuit achieves a diode physical-limit-bandwidth efficient rectification. In other words, the rectification bandwidth, as well as the peak efficiency, are controlled by the length of the stub and the physical limitation of the diodes.

5.
Sci Rep ; 11(1): 5868, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33712654

ABSTRACT

Conventional resonant inductive coupling wireless power transfer (WPT) systems encounter performance degradation while energizing biomedical implants. This degradation results from the dielectric and conductive characteristics of the tissue, which cause increased radiation and conduction losses, respectively. Moreover, the proximity of a resonator to the high permittivity tissue causes a change in its operating frequency if misalignment occurs. In this report, we propose a metamaterial inspired geometry with near-zero permeability property to overcome these mentioned problems. This metamaterial inspired geometry is stacked split ring resonator metamaterial fed by a driving inductive loop and acts as a WPT transmitter for an in-tissue implanted WPT receiver. The presented demonstrations have confirmed that the proposed metamaterial inspired WPT system outperforms the conventional one. Also, the resonance frequency of the proposed metamaterial inspired TX is negligibly affected by the tissue characteristics, which is of great interest from the design and operation prospects. Furthermore, the proposed WPT system can be used with more than twice the input power of the conventional one while complying with the safety regulations of electromagnetic waves exposure.

6.
Appl Opt ; 58(7): 1763-1771, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30874217

ABSTRACT

A general silicon mode-converter waveguide that converts a fundamental mode to any higher-order mode is proposed. Specifically, dielectric substrip waveguides are inserted in the fundamental mode propagation path so that the conversion is done directly in the same propagation waveguide, without coupling the power into another waveguide as it happens in traditional mode converters. The device has a very small footprint compared to traditional converters. A mathematical model is developed to determine the design parameters of the used dielectric material and analyze the whole performance of the proposed device. Both the effective index method (EIM) and the perturbative mode-coupled theory are used in our mathematical analysis to get exact values for both the coupling coefficient and the length of the used dielectric material, so as to ensure a maximum coupled power transfer to the higher-order mode. In addition, full vectorial 3D-FDTD simulations are performed to validate our mathematical model. Our results show good agreement between the approximate EIM method and accurate full vectorial 3D-finite-difference time-domain (FDTD) simulations in characterizing the device parameters and performance. In order to validate the design model, two mode converters are simulated, fabricated, and tested for converting a fundamental TE0 mode into both first- and second-order (TE1 and TE2) modes, respectively. Good insertion losses and low crosstalks are obtained. Good agreement between simulated and fabricated results are achieved.

7.
Opt Lett ; 43(17): 4176-4179, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30160745

ABSTRACT

A compact hybrid wavelength- (WDM) and mode-division (de)multiplexer (MDM) is proposed, and its performance is evaluated. The design of the device is based on 2D photonic crystals with a square lattice and Si rods. The device can multiplex two eigenmodes, TM0 and TM1, and two wavelengths, 1550 and 1300 nm. Two identical multimode interference couplers and an asymmetric directional coupler are used in implementing both the wavelength- and mode-division multiplexing functions, respectively. To avoid back-reflections, tapers are used at waveguide junctions. The structure is compact with dimensions of 29 µm×12 µm, which is suitable for on-chip integration. Simulation results reveal that the insertion losses and crosstalks are less than -1.0927 and -11.9024 dB, respectively, for all four channels.

8.
Appl Opt ; 57(1): 42-51, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29328110

ABSTRACT

A strip waveguide-based bi-directional mode-division multiplexer is proposed. A mathematical model has been proposed to analyze the performance, and the results are simulated. The design concept of this device to (de)multiplex three modes simultaneously has been studied previously for slab waveguides, both mathematically using the perturbative mode-coupled theory and by simulation using 2D FDTD Solutions (FDTD, finite difference time domain). As slab waveguides are not suitable for extracting fabrication parameters for most silicon-on-insulator applications, we apply the concept to a more practical device that involves strip waveguides rather than slab waveguides. The effective index method (EIM) has been used to develop the mathematical model and to get approximate forms for both the profiles and coupling coefficients. The return loss of different modes is taken into consideration to fully characterize the device performance. Simple formulas for both insertion and return losses of all multiplexing modes have been derived. In addition, full vectorial 3D FDTD simulations are performed so as to validate our mathematical model. Different design parameters have been used to get numerical results of the proposed device. Our results reveal that the EIM has enough accuracy to characterize the performance of our device compared to that of the complex full vectorial simulation. In order to validate the used model, the device has been fabricated and tested. Good insertion losses and crosstalks for all modes have been obtained.

SELECTION OF CITATIONS
SEARCH DETAIL
...