Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 15(7)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37514057

ABSTRACT

The spreading of microbial pathogens with more and more resistance to traditional low-molecular antibiotic agents demands new approaches to antibacterial therapy. The employment of bacteriophage enzymes capable of breaking bacterial cell walls has attracted much interest within this context. The specific features of the morphology of Gram-negative bacteria prevent the effective direct usage of lytic enzymes and require assistance from additional helpers to facilitate cell lysis. The current work is devoted to the study of boosting the lysis of Escherichia coli (E. coli) JM 109 and MH 1 strains induced by Lys394 bacteriophage endolysin by means of rod-like (56 × 13 nm) magnetic nanoparticles (MNPs) activated by a non-heating low-frequency magnetic field (LF MF) with a frequency of 50 Hz and a flux density of 68.5 mT in a pulse-pause mode (1 s on and 0.3 s off). According to theoretical assumptions, the mechanism of MNP assistance is presumably based upon the disordering of the outer membrane that facilitates enzyme permeation into peptidoglycans to its substrate. It is found that the effect of the LF MF reaches an almost a twofold acceleration of the enzyme reaction, resulting in almost 80 and 70%, respectively, of lysed E. coli JM 109 and MH 1 cells in 21 min. An increase in the membrane permeability was proven by two independent experiments employing ß-lactamase periplasmic enzyme leakage and Nile Red (NR) hydrophobic dye fluorescence. It is shown that the outer membrane disordering of E. coli caused by exposure to LF MF nanoparticle movement leads to almost complete (more than 80%) ß-lactamase release out of the cells' periplasm to the buffer suspension. Experiments with NR (displaying fluorescence in a non-polar medium only) reveal a drastic reduction in NR fluorescence intensity, reaching a change of an order of magnitude when exposed to LF MF. The data obtained provide evidence of changes in the bacterial cell wall structure. The result shown open up the prospects of non-heating LF MF application in enhancing enzyme activity against Gram-negative pathogens.

2.
J Am Chem Soc ; 133(28): 10901-9, 2011 Jul 20.
Article in English | MEDLINE | ID: mdl-21648418

ABSTRACT

The diversification of antiferromagnetic (AFM) oxides with high Néel temperature is of fundamental as well as technical interest if one considers the need for robust AFM in the field of spin-tronics (exchange bias, multiferroics, etc.). Within the broad series of so-called hexagonal perovskites (HP), the existence of face-sharing octahedral units drastically lowers the strength of magnetic exchanges as compared to corner-sharing octahedral edifices. Here, we show that the partial introduction of F(-) in several Fe-based HP types leads to a drastic increase of the AFM ordering close to the highest values reported in iron oxides (T(N) ≈ 700 K). Our experimental results are supported by ab initio calculations. The T(N) increase is explained by the structural effect of the aliovalent F(-) for O(2-) substitution occurring in preferred anionic positions: it leads to local changes of the Fe-O-Fe connectivity and to chemical reduction into predominant Fe(3+), both responsible for drastic magnetic changes.

3.
Inorg Chem ; 49(20): 9508-16, 2010 Oct 18.
Article in English | MEDLINE | ID: mdl-20866030

ABSTRACT

A new A(n)B(n)O(3n-2) homologous series of anion-deficient perovskites has been evidenced by preparation of the members with n = 5 (Pb(2.9)Ba(2.1)Fe(4)TiO(13)) and n = 6 (Pb(3.8)Bi(0.2)Ba(2)Fe(4.2)Ti(1.8)O(16)) in a single phase form. The crystal structures of these compounds were determined using a combination of transmission electron microscopy and X-ray and neutron powder diffraction (S.G. Ammm, a = 5.74313(7), b = 3.98402(4), c = 26.8378(4) Å, R(I) = 0.035, R(P) = 0.042 for Pb(2.9)Ba(2.1)Fe(4)TiO(13) and S.G. Imma, a = 5.7199(1), b = 3.97066(7), c = 32.5245(8) Å, R(I) = 0.032, R(P) = 0.037 for Pb(3.8)Bi(0.2)Ba(2)Fe(4.2)Ti(1.8)O(16)). The crystal structures of the A(n)B(n)O(3n-2) homologues are formed by slicing the perovskite structure with (101)(p) crystallographic shear (CS) planes. The shear planes remove a layer of oxygen atoms and displace the perovskite blocks with respect to each other by the 1/2[110](p) vector. The CS planes introduce edge-sharing connections of the transition metal-oxygen polyhedra at the interface between the perovskite blocks. This results in intrinsically frustrated magnetic couplings between the perovskite blocks due to a competition of the exchange interactions between the edge- and the corner-sharing metal-oxygen polyhedra. Despite the magnetic frustration, neutron powder diffraction and Mössbauer spectroscopy reveal that Pb(2.9)Ba(2.1)Fe(4)TiO(13) and Pb(3.8)Bi(0.2)Ba(2)Fe(4.2)Ti(1.8)O(16) are antiferromagnetically ordered below T(N) = 407 and 343 K, respectively. The Pb(2.9)Ba(2.1)Fe(4)TiO(13) and Pb(3.8)Bi(0.2)Ba(2)Fe(4.2)Ti(1.8)O(16) compounds are in a paraelectric state in the 5-300 K temperature range.

SELECTION OF CITATIONS
SEARCH DETAIL
...