Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38014274

ABSTRACT

Bacteria often attach to surfaces and grow densely-packed communities called biofilms. As biofilms grow, they expand across the surface, increasing their surface area and access to nutrients. Thus, the overall growth rate of a biofilm is directly dependent on its "range expansion" rate. One factor that limits the range expansion rate is vertical growth; at the biofilm edge there is a direct trade-off between horizontal and vertical growth-the more a biofilm grows up, the less it can grow out. Thus, the balance of horizontal and vertical growth impacts the range expansion rate and, crucially, the overall biofilm growth rate. However, the biophysical connection between horizontal and vertical growth remains poorly understood, due in large part to difficulty in resolving biofilm shape with sufficient spatial and temporal resolution from small length scales to macroscopic sizes. Here, we experimentally show that the horizontal expansion rate of bacterial colonies is controlled by the contact angle at the biofilm edge. Using white light interferometry, we measure the three-dimensional surface morphology of growing colonies, and find that small colonies are surprisingly well-described as spherical caps. At later times, nutrient diffusion and uptake prevent the tall colony center from growing exponentially. However, the colony edge always has a region short enough to grow exponentially; the size and shape of this region, characterized by its contact angle, along with cellular doubling time, determines the range expansion rate. We found that the geometry of the exponentially growing biofilm edge is well-described as a spherical-cap-napkin-ring, i.e., a spherical cap with a cylindrical hole in its center (where the biofilm is too tall to grow exponentially). We derive an exact expression for the spherical-cap-napkin-ring-based range expansion rate; further, to first order, the expansion rate only depends on the colony contact angle, the thickness of the exponentially growing region, and the cellular doubling time. We experimentally validate both of these expressions. In line with our theoretical predictions, we find that biofilms with long cellular doubling times and small contact angles do in fact grow faster than biofilms with short cellular doubling times and large contact angles. Accordingly, sensitivity analysis shows that biofilm growth rates are more sensitive to their contact angles than to their cellular growth rates. Thus, to understand the fitness of a growing biofilm, one must account for its shape, not just its cellular doubling time.

2.
Biophys Rev (Melville) ; 3(2): 021305, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35673523

ABSTRACT

The diversity of multicellular organisms is, in large part, due to the fact that multicellularity has independently evolved many times. Nonetheless, multicellular organisms all share a universal biophysical trait: cells are attached to each other. All mechanisms of cellular attachment belong to one of two broad classes; intercellular bonds are either reformable or they are not. Both classes of multicellular assembly are common in nature, having independently evolved dozens of times. In this review, we detail these varied mechanisms as they exist in multicellular organisms. We also discuss the evolutionary implications of different intercellular attachment mechanisms on nascent multicellular organisms. The type of intercellular bond present during early steps in the transition to multicellularity constrains future evolutionary and biophysical dynamics for the lineage, affecting the origin of multicellular life cycles, cell-cell communication, cellular differentiation, and multicellular morphogenesis. The types of intercellular bonds used by multicellular organisms may thus result in some of the most impactful historical constraints on the evolution of multicellularity.

3.
Sci Rep ; 8(1): 7587, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29765115

ABSTRACT

Throughout the animal kingdom, animals frequently benefit from living in groups. Models of collective behaviour show that simple local interactions are sufficient to generate group morphologies found in nature (swarms, flocks and mills). However, individuals also interact with the complex noisy environment in which they live. In this work, we experimentally investigate the group performance in navigating a noisy light gradient of two unrelated freshwater species: golden shiners (Notemigonuscrysoleucas) and rummy nose tetra (Hemigrammus bleheri). We find that tetras outperform shiners due to their innate individual ability to sense the environmental gradient. Using numerical simulations, we examine how group performance depends on the relative weight of social and environmental information. Our results highlight the importance of balancing of social and environmental information to promote optimal group morphologies and performance.


Subject(s)
Characidae/physiology , Cyprinidae/physiology , Animals , Behavior, Animal , Models, Biological , Social Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...