Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(20): 28905-28921, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38564134

ABSTRACT

Increased impetus on the application of nano-fertilizers to improve sustainable food production warrants understanding of nanophytotoxicity and its underlying mechanisms before its application could be fully realized. In this study, we evaluated the potential particle size-dependent effects of soil-applied copper oxide nanoparticles (nCuO) on crop yield and quality attributes (photosynthetic pigments, seed yield and nutrient quality, seed protein, and seed oil), including root and seed Cu bioaccumulation and a suite of oxidative stress biomarkers, in soybean (Glycine max L.) grown in field environment. We synthesized three distinct sized (25 nm = S [small], 50 nm = M [medium], and 250 nm = L [large]) nCuO with same surface charge and compared with soluble Cu2+ ions (CuCl2) and water-only controls. Results showed particle size-dependent effects of nCuO on the photosynthetic pigments (Chla and Chlb), seed yield, potassium and phosphorus accumulation in seed, and protein and oil yields, with nCuO-S showing higher inhibitory effects. Further, increased root and seed Cu bioaccumulation led to concomitant increase in oxidative stress (H2O2, MDA), and as a response, several antioxidants (SOD, CAT, POX, and APX) increased proportionally, with nCuO treatments including Cu2+ ion treatment. These results are corroborated with TEM ultrastructure analysis showing altered seed oil bodies and protein storage vacuoles with nCuO-S treatment compared to control. Taken together, we propose particle size-dependent Cu bioaccumulation-mediated oxidative stress as a mechanism of nCuO toxicity. Future research investigating the potential fate of varied size nCuO, with a focus on speciation at the soil-root interface, within the root, and edible parts such as seed, will guide health risk assessment of nCuO.


Subject(s)
Copper , Glycine max , Oxidative Stress , Particle Size , Soil , Glycine max/drug effects , Glycine max/metabolism , Soil/chemistry , Soil Pollutants , Bioaccumulation , Nanoparticles
2.
Sci Total Environ ; 876: 162762, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-36914126

ABSTRACT

Consumed globally, oilseeds serve as a major source of proteins and oils in human and animal nutrition, supporting global food security. Zinc (Zn) is an essential micronutrient critical for oil and protein synthesis in plants. In this study, we synthesized three distinct sized zinc oxide nanoparticles (nZnO: 38 nm = S [small], 59 nm = M [medium], and > 500 nm = L [large], and assessed the potential effects of varied particle sizes and concentrations (0, 50, 100, 200, and 500 mg/kg-soil) on seed yield attributes, nutrient quality and oil and protein yield in soybean (Glycine max L.) grown for a full lifecycle of 120 days, and compared with soluble Zn2+ ions (ZnCl2) and water-only controls. We observed particle size- and concentration-dependent influence of nZnO on photosynthetic pigments, pod formation, potassium and phosphorus accumulation in seed, and protein and oil yields. Overall, soybean showed significant stimulatory responses to nZnO-S for most of the parameters tested compared to nZnO-M, nZnO-L, and Zn2+ ions treatments up to 200 mg/kg, suggesting the potential for small size nZnO to improve seed quality and production in soybean. At 500 mg/kg, however, for all endpoints (except for carotenoids and seed formation) toxicity was observed with all Zn compounds. Further, TEM analysis of seed ultrastructure indicated potential alterations in seed oil bodies and protein storage vacuoles at a toxic concentration (500 mg/kg) of nZnO-S compared to control. These findings suggest 200 mg/kg as an optimal dose for the smallest size nZnO-S (38 nm) to significantly improve seed yield, nutrient quality, and oil and protein yield, paving a path for addressing global food insecurity using small sized nZnO as a novel nano-fertilizer to promote crop yield and nutrient quality, in soil-grown soybean.


Subject(s)
Nanoparticles , Zinc Oxide , Animals , Humans , Zinc Oxide/chemistry , Glycine max/metabolism , Soil , Zinc/metabolism , Water , Seeds/metabolism , Nutrients
3.
Sci Total Environ ; 863: 160920, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36529390

ABSTRACT

High alkaline and low organic carbon hinder micronutrients, such as copper (Cu), bioavailability in (semi-) arid soils, affecting plant nutrient quality and productivity. This study aimed at investigating the potential beneficial effects of foliar Cu oxide nanoparticles (CuONPs) and conventional chelated-Cu applications (0-400 mg Cu/L) on the biomass, physiological biomarkers of plant productivity and oxidative stress, Cu bioaugmentation, and essential oils and secondary metabolites in dragonhead (Dracocephalum moldavica [L.]) grown in Cu-limited alkaline soil in semi-arid condition. Employing a randomized complete block design with three replicates, two different sources of Cu (CuONPs and chelated-Cu), and a wide range of Cu concentrations (0, 40, 80, 160, and 400 mg Cu/L), plants were foliarly treated at day-60 and day-74. At day-120, plants were harvested at the end of the flowering stage. Results showed shoot Cu bioaccumulation, flavonoids and anthocyanin increased in a dose-dependent manner for both Cu compounds, but the beneficial effects were significantly higher with CuONPs compared to chelated-Cu treatments. Further, shoot biomass (23 %), photosynthetic pigments (chlorophyll-a and chlorophyll-b; 77 and 123 %, respectively), and essential oil content and yield (70 and 104 %, respectively) increased significantly with foliar application of 80 mg/L CuONPs compared to equivalent concentration of chelated-Cu, suggesting an optimal threshold beyond which toxicity was observed. Likewise, commercially important secondary metabolites' yield (such as geranyl acetate, geranial, neral, and geraniol) was higher with 80 mg/L CuONPs compared to 160 mg/L chelated-Cu (2.3, 0.5, 2.5, and 7.1 %, respectively). TEM analyses of leaf ultrastructure revealed altered cellular organelles for both compounds at 400 mg/L, corroborating the results of oxidative stress response (malondialdehyde and H2O2). In conclusion, these findings indicate significantly higher efficacy of CuONPs, with an optimal threshold of 80 mg/L, in promoting essential oil and bioactive compound yield in dragonhead and may pave a path for the use of nano-Cu as a sustainable fertilizer promoting agricultural production in semi-arid soils that are micronutrient Cu deficient.


Subject(s)
Lamiaceae , Nanoparticles , Oils, Volatile , Biomass , Chlorophyll/metabolism , Copper/toxicity , Copper/analysis , Hydrogen Peroxide/analysis , Oils, Volatile/isolation & purification , Oils, Volatile/metabolism , Oxides , Soil , Lamiaceae/growth & development , Lamiaceae/metabolism
4.
Sci Total Environ ; 835: 155348, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35460795

ABSTRACT

Addressing global Zinc (Zn) deficiency in food and feed requires innovation in Zn fertilizer. Recently, Zn oxide nanoparticles (ZnONPs) have piqued interest for potential use as a novel nano-Zn fertilizer. However, little is known about potential factors influencing ZnONPs partitioning in different plant tissues, and changes in root system architecture (RSA) and soil characteristics. Herein, we tested the effects of particle size (38, 59, and > 500 nm) and concentration (0-500 mg/kg) of ZnONPs on Zn bioaccumulation in multiple tissues in soil-grown soybean (Glycine max) grown for 120 days, including changes in RSA (root biomass, length, area, volume, and density) and soil characteristics (pH and electrical conductance [EC]). Our results showed significant effects of Zn compound types, Zn concentrations and their interaction on RSA, and Zn uptake by root, stem, leaf, and seed, in soybean. Concentration-response curves for root structures with varied sized ZnONPs and Zn2+ ions were deemed nonlinear, whereas for Zn distribution between different tissues the concentration-response curves were linear. Interestingly, ZnONPs and Zn2+ ions up to 200 mg/kg showed beneficial effects on root growth and development, but toxic response was observed at higher concentrations for both compounds. Root dry weight, length, volume, and area with 200 mg/kg ZnONPs-38 nm were higher by 48%, 56%, 33% and 44%, respectively, compared to control, and were higher by 15%, 23%, 15% and 19%, respectively, compared to 200 mg/kg ZnCl2. In general, soybean responses to the smallest size ZnONPs-38 nm were higher for all parameters evaluated compared to the larger-sized ZnONPs (59 and > 500 nm) and Zn2+ ions. Zn bioaccumulation varied among tissues in the order: root > seed > leaf > stem. A minor but steady decrease in soil pH and EC occurred among different concentrations for both ZnONPs and Zn2+ ions. Improved RSA can facilitate water and nutrient uptake in soybean, promoting growth and yield, especially considering arid and semi-arid climates where water is a limiting factor. Further, improving seed and shoot Zn levels, as demonstrated herein using ZnONPs, is paramount to addressing Zn deficiency in food and feed. Future studies assessing potential impacts on soil microbes, soil health and food safety upon ZnONPs application is critical for risk assessment of the novel nanofertilizer.


Subject(s)
Nanoparticles , Zinc Oxide , Fertilizers , Soil/chemistry , Glycine max/physiology , Water , Zinc/pharmacology , Zinc Oxide/pharmacology
5.
Plants (Basel) ; 9(10)2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33050103

ABSTRACT

Understanding the potential uptake and biodistribution of engineered nanoparticles (ENPs) in soil-grown plants is imperative for realistic toxicity and risk assessment considering the oral intake of edibles by humans. Herein, growing N-fixing symbiont (Bradyrhizobium japonicum) inoculated soybean (Glycine max (L.) Merr.) for a full lifecycle of 120 days, we assessed the potential influence of particle size (25, 50, and 250 nm) and concentration (0, 50, 100, 200, and 500 mg/kg soil) of Copper oxide nanoparticles (CuONPs) on: (1) root system architecture, (2) soil physicochemical attributes at the soil-root interface, and (3) Cu transport and accumulation in root, stem, leaf, and seed in soybean, and compared them with the soluble Cu2+ ions and water-only controls. Finally, we performed a comparative assessment of total seed Cu levels in soybean with other valuable food sources for Cu intake and discussed potential human health implications. Results showed particle size- and concentration-dependent influence of CuONPs on Cu uptake and distribution in root, stem, leaf, and seed. Alterations in root architecture (root biomass, length, volume, and area) were dependent on the Cu compound types, Cu concentrations, and their interactions. Concentration-response relationships for all three sizes of CuONPs and Cu2+ ions were found to be linear. Furthermore, CuONPs and Cu2+ ions had inhibitory effects on root growth and development. Overall, soybean responses to the smallest size of CuONPs-25 nm-were greater for all parameters tested compared to the two larger-sized CuONPs (50 nm, 250 nm) or Cu2+ ions. Results suggest that minor changes in soil-root physicochemical attributes may not be a major driver for Cu uptake in soybean. Cu bioaccumulation followed the order: root > leaf > stem > seed. Despite reduction in root architecture and seed yield, the smallest size CuONPs-25 nm led to increased total seed Cu uptake compared to the larger-sized CuONPs or Cu2+ ions. Our findings also suggest that soil amendment with CuONPs, and more so with the smallest size of CuONPs-25 nm-could significantly improve seed nutritional Cu value in soybean as reflected by the % Daily Values (DV) and are rated "Good" to "Very Good" according to the "World's Healthiest Foods" rating. However, until the potential toxicity and risk from CuONP-fortified soybean seed ingestion is characterized in humans, we caution recommending such seeds for daily human consumption when addressing food Cu-deficiency and associated diseases, globally.

6.
Sci Total Environ ; 738: 140240, 2020 Oct 10.
Article in English | MEDLINE | ID: mdl-32570083

ABSTRACT

Dearth of knowledge about the prospect of using Zinc (Zn) based nanoparticles (NPs) to enrich Zn-deficient soils with Zn warrants investigations into potential soil applications of ZnONPs for improving crop yield and plant health. Herein, we investigated the potential influence of ZnONPs on seed yield, focusing on particle size-, morphology-, and concentration-dependent responses of multiple antioxidant defense biomarkers, in soil-grown soybean (Glycine max cv. Kowsar) during its lifecycle of 120 d. We achieved this goal following a rational design strategy that enabled us to synthesize three types of morphologically different ZnONPs (spherical/ 38 nm, floral-like/ 59 nm, and rod-like/ >500 nm); all with high purity, triclinic crystal structure, and negative surface charge; and compared the toxicity with Zn2+ ions. Each pot received two seeds, placed in soil inoculated with N-fixing bacterium (Rhizobium japonicum) and grown in outdoor mesocosm for 120 d. Our findings demonstrated a significant particle size-, morphology-, and concentration-dependent influence of ZnONPs on seed yield, lipid peroxidation, and various antioxidant biomarkers in soybean. Our spherical 38 nm ZnONPs were the most protective compared to the floral-like 59 nm ZnONPs, rod-like >500 nm ZnONPs, and Zn2+ ions, particularly up to 160 mg Zn/kg. However, at the highest concentration of 400 mg Zn/kg, spherical 38 nm ZnONPs elicited the highest oxidative stress responses (H2O2 synthesis, MDA, SOD, CAT, POX) in soybean compared to the other two morphologically different ZnONPs tested. The concentration-response curves for the three types of ZnONPs and Zn2+ ions were nonlinear (nonmonotonous) for all the endpoints evaluated. The weight of evidence also suggested a differential nano-specific toxicity of ZnONPs compared to ionic Zn2+ toxicity in soybean. Our higher no-observed-adverse-effect-level (NOAEL) of 160 mg Zn/kg indicates the potential for using ZnONPs as a novel nanofertilizer for crops grown in Zn-deficient soils to improve crop yield, food quality and address malnutrition, globally.


Subject(s)
Nanoparticles , Zinc Oxide , Antioxidants , Hydrogen Peroxide , Seeds , Soil , Glycine max
7.
Sci Total Environ ; 715: 136994, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32041054

ABSTRACT

Increasing applications of engineered nanomaterials (ENMs) warrant lifecycle assessment of their potential toxicity. Herein, we investigated potential phytotoxicity of copper oxide nanoparticles (CuONPs) on seed yield, focusing on particle size- and concentration-dependent responses of multiple antioxidant defense biomarkers, in soil-grown Glycinemax (cv. Kowsar) during its lifecycle. To this end, we synthesized three distinct sizes CuONPs (25, 50 and 250 nm): all with high purity, monoclinic crystal structure, and same surface charge. Each pot received two seeds, placed in soil inoculated with N-fixing bacteria (Rhizobium japonicum) and grown outdoor for 120 days. Our results show lipid peroxidation (MDA) and several antioxidant biomarkers (SOD, CAT, POX, APX) were differentially altered by the copper compound type, concentrations, and their interactions (p < 0.01). We show particle size- and concentration-dependent influence of CuONPs on lipid peroxidation, and such antioxidant biomarkers including SOD, CAT, POX, and APX, in soybean leaf at 120-day post-plantation. Particularly, the effects of CuONP-25 were consistently higher for most antioxidant biomarkers tested compared to the two larger size CuONPs (CuONP-50, CuONP-250) or Cu2+ ions treatments. We show that the concentration-response curves for CuONP-25 and Cu2+ ions were linear (R2 > 0.65), unlike for the larger size CuONPs (CuONP-50, CuONP-250) the relationships were nonlinear (R2 < 0.45), for most antioxidant biomarkers. The concentration-response curves for seed yield for all types of Cu compounds were linear (R2 > 0.65). Soybean seed yield also mirrored particle size- and concentration-dependent inhibition with CuONPs, and inhibition of CuONP-25 was significantly higher than the two larger size CuONPs or Cu2+ ions at all concentrations tested. All in all, our findings indicate differential nano-specific toxicity compared to ionic Cu2+ toxicity in soybean. These results may guide researchers and regulators on how best to tailor ENMs with specific particle characteristics rendering them more or less toxic, and better inform risk assessment of CuONPs in soil grown food crops such as soybean.


Subject(s)
Metal Nanoparticles , Antioxidants , Copper , Oxidative Stress , Oxides , Particle Size , Seeds , Soil , Glycine max
8.
Plant Physiol Biochem ; 112: 227-238, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28107731

ABSTRACT

Owing to rising production and use of engineered nanoparticles (ENPs) in the myriad of consumer applications, ENPs are being released into the environment where their potential fate and effects have remained unclear. With naturally occurring arbuscular mycorrhizal fungus (AMF; Glomus intraradices) in soils, their influence (positive or negative) on ENPs toxicity in plants is not well documented. Herein, we investigated potential influence of AMF on the growth and development in fenugreek (Trigonella foenum-graecum) under varied Zinc oxide nanoparticles (ZnONPs) treatments (0, 125, 250, 375 and 500 µg g-1). Results showed that in the absence of AMF, increasing ZnONPs concentrations caused significant decline in root nodule number and biomass in fenugreek. In non-AMF plants, shoot length, and biomass of both root and shoot decreased at ≥375 µg g-1 of ZnONPs treatment; while Zn uptake by shoot and root increased as a function of ZnONPs treatments. Interestingly, AMF colonization in roots significantly diminished at 375 µg g-1 ZnONPs treatment compared to controls. More importantly, AMF inoculation ameliorated inhibitory effects of ZnONPs by promoting secretion of glycoprotein called glomalin-a potent metal chelator-within the rhizosphere, which significantly reduced (by almost half) Zn uptake by root and subsequent translocation to the shoot. AMF inoculation (high glomalin secretion)-mediated low Zn uptake might have been stimulatory to promote root and shoot growth in fenugreek. The results highlight significant protective roles of rhizospheric AMF through glomalin secretion thereby ameliorating nanotoxicity in plants, and underscore the need to include soil-microbial interactions when assessing nanophytotoxicology and risks. Furthermore, potential positive implications to other organisms in the food chain can be inferred due to low tropic transfer of ENPs and/or associated toxic dissolved ions in the presence of naturally occurring soil fingi.


Subject(s)
Fungal Proteins/metabolism , Glycoproteins/metabolism , Mycorrhizae/metabolism , Nanoparticles/toxicity , Trigonella/metabolism , Zinc Oxide/toxicity , Biodegradation, Environmental/drug effects , Biomass , Hydrodynamics , Linear Models , Mycorrhizae/drug effects , Nanoparticles/ultrastructure , Particle Size , Plant Leaves/drug effects , Plant Leaves/ultrastructure , Plant Root Nodulation/drug effects , Plant Shoots/anatomy & histology , Plant Shoots/drug effects , Plant Shoots/metabolism , Rhizosphere , Soil , Trigonella/anatomy & histology , Trigonella/drug effects , X-Ray Diffraction , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...