Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Front Cardiovasc Med ; 10: 1205787, 2023.
Article in English | MEDLINE | ID: mdl-37342443

ABSTRACT

Background: Left ventricular noncompaction (LVNC) cardiomyopathy is a disorder that can be complicated by heart failure, arrhythmias, thromboembolism, and sudden cardiac death. The aim of this study is to clarify the genetic landscape of LVNC in a large cohort of well-phenotyped Russian patients with LVNC, including 48 families (n=214). Methods: All index patients underwent clinical examination and genetic analysis, as well as family members who agreed to participate in the clinical study and/or in the genetic testing. The genetic testing included next generation sequencing and genetic classification according to ACMG guidelines. Results: A total of 55 alleles of 54 pathogenic and likely pathogenic variants in 24 genes were identified, with the largest number in the MYH7 and TTN genes. A significant proportion of variants -8 of 54 (14.8%) -have not been described earlier in other populations and may be specific to LVNC patients in Russia. In LVNC patients, the presence of each subsequent variant is associated with increased odds of having more severe LVNC subtypes than isolated LVNC with preserved ejection fraction. The corresponding odds ratio is 2.77 (1.37 -7.37; p <0.001) per variant after adjustment for sex, age, and family. Conclusion: Overall, the genetic analysis of LVNC patients, accompanied by cardiomyopathy-related family history analysis, resulted in a high diagnostic yield of 89.6%. These results suggest that genetic screening should be applied to the diagnosis and prognosis of LVNC patients.

2.
J Pers Med ; 12(7)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35887629

ABSTRACT

Cystic fibrosis, phenylketonuria, alpha-1 antitrypsin deficiency, and sensorineural hearing loss are among the most common autosomal recessive diseases, which require carrier screening. The evaluation of population allele frequencies (AF) of pathogenic variants in genes associated with these conditions and the choice of the best genotyping method are the necessary steps toward development and practical implementation of carrier-screening programs. We performed custom panel genotyping of 3821 unrelated participants from two Russian population representative samples and three patient groups using real-time polymerase chain reaction (PCR) and next generation sequencing (NGS). The custom panel included 115 known pathogenic variants in the CFTR, PAH, SERPINA1, and GJB2 genes. Overall, 38 variants were detected. The comparison of genotyping platforms revealed the following advantages of real-time PCR: relatively low cost, simple genotyping data analysis, and easier detection of large indels, while NGS showed better accuracy of variants identification and capability for detection of additional pathogenic variants in adjacent regions. A total of 23 variants had significant differences in estimated AF comparing with non-Finnish Europeans from gnomAD. This study provides new AF data for variants associated with the studied disorders and the comparison of genotyping methods for carrier screening.

3.
Front Genet ; 12: 709419, 2021.
Article in English | MEDLINE | ID: mdl-34691145

ABSTRACT

We performed a targeted sequencing of 242 clinically important genes mostly associated with cardiovascular diseases in a representative population sample of 1,658 individuals from the Ivanovo region northeast of Moscow. Approximately 11% of 11,876 detected variants were not found in the Single Nucleotide Polymorphism Database (dbSNP) or reported earlier in the Russian population. Most novel variants were singletons and doubletons in our sample, and virtually no novel alleles presumably specific for the Russian population were able to reach the frequencies above 0.1-0.2%. The overwhelming majority (99.3%) of variants detected in this study in three or more copies were shared with other populations. We found two dominant and seven recessive known pathogenic variants with allele frequencies significantly increased compared to those in the gnomAD non-Finnish Europeans. Of the 242 targeted genes, 28 were in the list of 59 genes for which the American College of Medical Genetics and Genomics (ACMG) recommended the reporting of incidental findings. Based on the number of variants detected in the sequenced subset of ACMG59 genes, we approximated the prevalence of known pathogenic and novel or rare protein-truncating variants in the complete set of ACMG59 genes in the Ivanovo population at 1.4 and 2.8%, respectively. We analyzed the available clinical data and observed the incomplete penetrance of known pathogenic variants in the 28 ACMG59 genes: only 1 individual out of 12 with such variants had the phenotype most likely related to the variant. When known pathogenic and novel or rare protein-truncating variants were considered together, the overall rate of confirmed phenotypes was about 19%, with maximum in the subset of novel protein-truncating variants. We report three novel protein truncating variants in APOB and one in MYH7 observed in individuals with hypobetalipoproteinemia and hypertrophic cardiomyopathy, respectively. Our results provide a valuable reference for the clinical interpretation of gene sequencing in Russian and other populations.

4.
Int J Mol Sci ; 22(13)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202524

ABSTRACT

Left ventricular non-compaction cardiomyopathy (LVNC) is a rare heart disease, with or without left ventricular dysfunction, which is characterized by a two-layer structure of the myocardium and an increased number of trabeculae. The study of familial forms of LVNC is helpful for risk prediction and genetic counseling of relatives. Here, we present a family consisting of three members with LVNC. Using a next-generation sequencing approach a combination of two (likely) pathogenic nonsense mutations DSG2-p.S363X and TBX20-p.D278X was identified in all three patients. TBX20 encodes the cardiac T-box transcription factor 20. DSG2 encodes desmoglein-2, which is part of the cardiac desmosomes and belongs to the cadherin family. Since the identified nonsense variant (DSG2-p.S363X) is localized in the extracellular domain of DSG2, we performed in vitro cell transfection experiments. These experiments revealed the absence of truncated DSG2 at the plasma membrane, supporting the pathogenic relevance of DSG2-p.S363X. In conclusion, we suggest that in the future, these findings might be helpful for genetic screening and counseling of patients with LVNC.


Subject(s)
Cardiomyopathies/diagnosis , Cardiomyopathies/etiology , Desmoglein 2/genetics , Mutation , T-Box Domain Proteins/genetics , Ventricular Dysfunction, Left/diagnosis , Ventricular Dysfunction, Left/etiology , Adult , Cells, Cultured , DNA Mutational Analysis , Female , Genetic Association Studies/methods , Genetic Predisposition to Disease , Heart Function Tests , Humans , Magnetic Resonance Imaging/methods , Pedigree , Symptom Assessment
5.
Genes (Basel) ; 12(1)2021 01 06.
Article in English | MEDLINE | ID: mdl-33418990

ABSTRACT

Familial hypercholesterolemia (FH) is a common autosomal codominant disorder, characterized by elevated low-density lipoprotein cholesterol levels causing premature atherosclerotic cardiovascular disease. About 2900 variants of LDLR, APOB, and PCSK9 genes potentially associated with FH have been described earlier. Nevertheless, the genetics of FH in a Russian population is poorly understood. The aim of this study is to present data on the spectrum of LDLR, APOB, and PCSK9 gene variants in a cohort of 595 index Russian patients with FH, as well as an additional systematic analysis of the literature for the period of 1995-2020 on LDLR, APOB and PCSK9 gene variants described in Russian patients with FH. We used targeted and whole genome sequencing to search for variants. Accordingly, when combining our novel data and the data of a systematic literature review, we described 224 variants: 187 variants in LDLR, 14 variants in APOB, and 23 variants in PCSK9. A significant proportion of variants, 81 of 224 (36.1%), were not described earlier in FH patients in other populations and may be specific for Russia. Thus, this study significantly supplements knowledge about the spectrum of variants causing FH in Russia and may contribute to a wider implementation of genetic diagnostics in FH patients in Russia.


Subject(s)
Apolipoprotein B-100/genetics , Genetic Predisposition to Disease , Hyperlipoproteinemia Type II/genetics , Proprotein Convertase 9/genetics , Receptors, LDL/genetics , Cohort Studies , DNA Mutational Analysis , Genetic Variation , Humans , Hyperlipoproteinemia Type II/epidemiology , Mutation , Russia/epidemiology , Whole Genome Sequencing
6.
Biopreserv Biobank ; 19(1): 73-82, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33058731

ABSTRACT

The research biobanking field is developing rapidly in Russia. Over the course of the last decade, numerous biobanks were created or formed from existing collections of human and environmental biospecimens. The Russian National Association of Biobanks and Biobanking Specialists (NASBIO) was established in December 2018, aiming to: (1) unite professionals and research centers to create and develop a network of biobanks in Russia; (2) provide services and expertise in the field of biobanking; (3) execute various research projects utilizing biobanks' infrastructure; and (4) facilitate integration of Russian biomedical research centers into global research activities. The organizational structure, aims, and plans of this newly formed national association are reviewed in this article. The founders of NASBIO hope that the association will promote further development of biobanks and their networking in Russia, which is critically important for the success of national biomedical, pharmaceutical, and biotechnological research, and can facilitate international biobanking projects on a global scale.


Subject(s)
Biological Specimen Banks , Biomedical Research , Humans , Russia , Specialization
7.
J Pers Med ; 10(3)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32971794

ABSTRACT

Genetic screening is an advanced tool for reducing recessive disease burden. Nowadays, it is still unclear as to the number of genes or their variants that are necessary for effective screening. This paper describes the development of a carrier screening custom panel for cystic fibrosis, phenylketonuria, alpha-1 antitrypsin deficiency, and sensorineural hearing loss consisting of 116 variants in the CFTR, PAH, SERPINA1, and GJB2 genes. The approach is based on the cheapest and fastest method, on using a small number of genes, and on the estimation of the effectiveness of carriers' detection. The custom panel was tested on a population-based cohort that included 1244 participants. Genotypes were determined by the TaqMan OpenArray Genotyping platform on the QuantStudio 12K Flex Real-Time PCR System. The frequency of heterozygotes in the Russian population was 16.87% or 1:6 (CI95%: 14.76-19.00% by Clopper-Pearson exact method): in CFTR-2.81% (1:36), PAH-2.33% (1:43), SERPINA1-4.90% (1:20), and GJB2-6.83% (1:15). The data on allele frequencies were obtained for the first time on a Russian population. The panel allows us to identify the vast majority of carriers of recessive diseases in the population. It is an effective approach to carrier screening for common recessive diseases.

8.
Pharmgenomics Pers Med ; 13: 679-686, 2020.
Article in English | MEDLINE | ID: mdl-33623413

ABSTRACT

PURPOSE: Cystic fibrosis (CF) is one of the most common monogenic diseases with an autosomal recessive inheritance. Carrier screening leads to a reduction in the number of children born with CF disease. The aim of this study was to develop the custom panel for the diagnosis of heterozygous carriage of polymorphic variants in the CFTR gene and to establish their allelic frequencies (AF) in one of the Russian regions where ethnic Russians predominate. PATIENTS AND METHODS: The diagnostic panel was designed on the basis of data from the register of CF patients in Russia for 2017 and validated on 22 blood samples of patients with previously genetically established CF. The study participants (n=642) for CF variants estimation were randomly selected from the population-based cohort study ESSE-Vologda. Genotypes were determined by real-time PCR on the QuantStudio 12K Flex Real-Time PCR System. Data processing was performed using the TaqMan Genotyper Software. RESULTS: The proposed diagnostic panel allowed simultaneous analysis of 60 variants of the CFTR gene. A total of 23 carriers of the following variants were identified among 642 participants: F508del (rs113993960) with a frequency of 2.02%, L138ins (rs397508686) and 394delTT (rs121908769) - 0.47%, CFTRdele2.3 (c.54-5940_273+10250del21080; p.S18Rfs*16) - 0.31%, R117H (rs78655421), and G542X (rs113993959) - 0.16%. The frequency of heterozygotes in the Russian population was 3.58% or 1:28 (CI95%: 2.28-5.33% by Clopper-Pearson exact method). CONCLUSION: High frequency of heterozygous CFTR variants carriers and availability of highly productive diagnostic panel for detection of CFTR variants suggest the prospect of carrier screening for some common CF variants among Russian population.

9.
Per Med ; 16(6): 501-509, 2019 11.
Article in English | MEDLINE | ID: mdl-31709888

ABSTRACT

The National Medical Research Center for Preventive Medicine of Russia (NMRCPM) conducts epidemiological and clinical research for the development of personalized medicine. This is why NMRCPM has faced the problem of how to standardize preanalytical conditions for all biospecimens from various scientific projects and of how to provide long-term responsible standardized regulated safe storage of blood and its derivatives. This article describes various aspects of establishing a biobank in a large medical center dedicated to integrating the biomarkers research activities of different departments. To date, >205,000 serum/plasma/whole blood specimens have been stored. Collaboration with >25 scientific projects as well as the biobank's own research project has been organized. The availability of this biobank became a platform for the establishment of the Personalized Medicine Center in NMRCPM.


Subject(s)
Biological Specimen Banks/standards , Precision Medicine/methods , Biological Specimen Banks/trends , Biomedical Research , Humans , Research Design , Russia , Specimen Handling/methods , Specimen Handling/standards
10.
Genes (Basel) ; 9(8)2018 Aug 17.
Article in English | MEDLINE | ID: mdl-30126146

ABSTRACT

Type 2 diabetes (T2D) and obesity are common chronic disorders with multifactorial etiology. In our study, we performed an exome sequencing analysis of 110 patients of Russian ethnicity together with a multi-perspective approach based on biologically meaningful filtering criteria to detect novel candidate variants and loci for T2D and obesity. We have identified several known single nucleotide polymorphisms (SNPs) as markers for obesity (rs11960429), T2D (rs9379084, rs1126930), and body mass index (BMI) (rs11553746, rs1956549 and rs7195386) (p < 0.05). We show that a method based on scoring of case-specific variants together with selection of protein-altering variants can allow for the interrogation of novel and known candidate markers of T2D and obesity in small samples. Using this method, we identified rs328 in LPL (p = 0.023), rs11863726 in HBQ1 (p = 8 × 10-5), rs112984085 in VAV3 (p = 4.8 × 10-4) for T2D and obesity, rs6271 in DBH (p = 0.043), rs62618693 in QSER1 (p = 0.021), rs61758785 in RAD51B (p = 1.7 × 10-4), rs34042554 in PCDHA1 (p = 1 × 10-4), and rs144183813 in PLEKHA5 (p = 1.7 × 10-4) for obesity; and rs9379084 in RREB1 (p = 0.042), rs2233984 in C6orf15 (p = 0.030), rs61737764 in ITGB6 (p = 0.035), rs17801742 in COL2A1 (p = 8.5 × 10-5), and rs685523 in ADAMTS13 (p = 1 × 10-6) for T2D as important susceptibility loci in Russian population. Our results demonstrate the effectiveness of whole exome sequencing (WES) technologies for searching for novel markers of multifactorial diseases in cohorts of limited size in poorly studied populations.

SELECTION OF CITATIONS
SEARCH DETAIL
...