Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(18): 5562-5569, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38682815

ABSTRACT

Transition metal trichalcogenides (TMTCs) offer remarkable opportunities for tuning electronic states through modifications in chemical composition, temperature, and pressure. Despite considerable interest in TMTCs, there remain significant knowledge gaps concerning the evolution of their electronic properties under compression. In this study, we employ experimental and theoretical approaches to comprehensively explore the high-pressure behavior of the electronic properties of TiS3, a quasi-one-dimensional (Q1D) semiconductor, across various temperature ranges. Through high-pressure electrical resistance and magnetic measurements at elevated pressures, we uncover a distinctive sequence of phase transitions within TiS3, encompassing a transformation from an insulating state at ambient pressure to the emergence of an incipient superconducting state above 70 GPa. Our findings provide compelling evidence that superconductivity at low temperatures of ∼2.9 K is a fundamental characteristic of TiS3, shedding new light on the intriguing high-pressure electronic properties of TiS3 and underscoring the broader implications of our discoveries for TMTCs in general.

2.
Nanotechnology ; 32(49)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34438379

ABSTRACT

Nanotweezers based on the shape memory effect have been developed and tested. In combination with a commercial nanomanipulator, they allow 3D nanoscale operation controlled in a scanning electron microscope. Here we apply the tweezers for the fabrication of nanostructures based on whiskers of NbS3, a quasi one-dimensional compound with room-temperature charge density wave (CDW). The nanowhiskers were separated without damage from the growth batch, an entangled array, and safely transferred to a substrate with a preliminary deposited Au film. The contacts were fabricated with Pt sputtering on top of the whisker and the film. The high degree of synchronization of the sliding CDW under a RF field with a frequency up to 600 MHz confirms the high quality of the contacts and of the sample structure after the manipulations. The proposed technique paves the way to novel type micro- and nanostructures fabrication and their various applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...