Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Numer Method Biomed Eng ; 39(2): e3665, 2023 02.
Article in English | MEDLINE | ID: mdl-36448192

ABSTRACT

Estimating a patient-specific computational model's parameters relies on data that is often unreliable and ill-suited for a deterministic approach. We develop an optimization-based uncertainty quantification framework for probabilistic model tuning that discovers model inputs distributions that generate target output distributions. Probabilistic sampling is performed using a surrogate model for computational efficiency, and a general distribution parameterization is used to describe each input. The approach is tested on seven patient-specific modeling examples using CircAdapt, a cardiovascular circulatory model. Six examples are synthetic, aiming to match the output distributions generated using known reference input data distributions, while the seventh example uses real-world patient data for the output distributions. Our results demonstrate the accurate reproduction of the target output distributions, with a correct recreation of the reference inputs for the six synthetic examples. Our proposed approach is suitable for determining the parameter distributions of patient-specific models with uncertain data and can be used to gain insights into the sensitivity of the model parameters to the measured data.


Subject(s)
Models, Statistical , Patient-Specific Modeling , Humans , Uncertainty , Models, Cardiovascular
2.
Chem Sci ; 14(1): 203-213, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36605753

ABSTRACT

Accelerating the development of π-conjugated molecules for applications such as energy generation and storage, catalysis, sensing, pharmaceuticals, and (semi)conducting technologies requires rapid and accurate evaluation of the electronic, redox, or optical properties. While high-throughput computational screening has proven to be a tremendous aid in this regard, machine learning (ML) and other data-driven methods can further enable orders of magnitude reduction in time while at the same time providing dramatic increases in the chemical space that is explored. However, the lack of benchmark datasets containing the electronic, redox, and optical properties that characterize the diverse, known chemical space of organic π-conjugated molecules limits ML model development. Here, we present a curated dataset containing 25k molecules with density functional theory (DFT) and time-dependent DFT (TDDFT) evaluated properties that include frontier molecular orbitals, ionization energies, relaxation energies, and low-lying optical excitation energies. Using the dataset, we train a hierarchy of ML models, ranging from classical models such as ridge regression to sophisticated graph neural networks, with molecular SMILES representation as input. We observe that graph neural networks augmented with contextual information allow for significantly better predictions across a wide array of properties. Our best-performing models also provide an uncertainty quantification for the predictions. To democratize access to the data and trained models, an interactive web platform has been developed and deployed.

3.
Nat Comput Sci ; 1(3): 229-238, 2021 Mar.
Article in English | MEDLINE | ID: mdl-38183201

ABSTRACT

The problem of the efficient design of material microstructures exhibiting desired properties spans a variety of engineering and science applications. The ability to rapidly generate microstructures that exhibit user-specified property distributions can transform the iterative process of traditional microstructure-sensitive design. We reformulate the microstructure design process using a constrained generative adversarial network (GAN) model. This approach explicitly encodes invariance constraints within GANs to generate two-phase morphologies for photovoltaic applications obeying design specifications: specifically, user-defined short-circuit current density and fill factor combinations. Such invariance constraints can be represented by differentiable, deep learning-based surrogates of full physics models mapping microstructures to photovoltaic properties. Furthermore, we propose a multi-fidelity surrogate that reduces expensive label requirements by a factor of five. Our framework enables the incorporation of expensive or non-differentiable constraints for the fast generation of microstructures (in 190 ms) with user-defined properties. Such proposed physics-aware data-driven methods for inverse design problems can be used to considerably accelerate the field of microstructure-sensitive design.

4.
J Chem Inf Model ; 60(3): 1424-1431, 2020 03 23.
Article in English | MEDLINE | ID: mdl-31935097

ABSTRACT

As new generations of thin-film semiconductors are moving toward solution-based processing, the development of printing formulations will require information pertaining to the free energies of mixing of complex mixtures. From the standpoint of in silico material design, this move necessitates the development of methods that can accurately and quickly evaluate these formulations in order to maximize processing speed and reproducibility. Here, we make use of molecular dynamics (MD) simulations, in combination with the two-phase thermodynamic (2PT) model, to explore the free energy of mixing surfaces for a series of halogenated solvents and high-boiling point solvent additives used in the development of thin-film organic semiconductors. Although the combined methods generally show good agreement with available experimental data, the computational cost to traverse the free-energy landscape is considerable. Hence, we demonstrate how a Bayesian optimization scheme, coupled with the MD and 2PT approaches, can drastically reduce the number of simulations required, in turn shrinking both the computational cost and time.


Subject(s)
Molecular Dynamics Simulation , Bayes Theorem , Entropy , Reproducibility of Results , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...