Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Ecol ; 86(4): 2819-2837, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37597041

ABSTRACT

The amount of available light plays a key role in the growth and development of microbial communities. In the present study, we tested to what extent sponge-associated prokaryotic communities differed between specimens of the sponge species Cinachyrella kuekenthali and Xestospongia muta collected in dimly lit (caves and at greater depths) versus illuminated (shallow water) habitats. In addition to this, we also collected samples of water, sediment, and another species of Cinachyrella, C. alloclada. Overall, the biotope (sponge host species, sediment, and seawater) proved the major driver of variation in prokaryotic community composition. The light habitat, however, also proved a predictor of compositional variation in prokaryotic communities of both C. kuekenthali and X. muta. We used an exploratory technique based on machine learning to identify features (classes, orders, and OTUs), which distinguished X. muta specimens sampled in dimly lit versus illuminated habitat. We found that the classes Alphaproteobacteria and Rhodothermia and orders Puniceispirillales, Rhodospirillales, Rhodobacterales, and Thalassobaculales were associated with specimens from illuminated, i.e., shallow water habitat, while the classes Dehalococcoidia, Spirochaetia, Entotheonellia, Nitrospiria, Schekmanbacteria, and Poribacteria, and orders Sneathiellales and Actinomarinales were associated with specimens sampled from dimly lit habitat. There was, however, considerable variation within the different light habitats highlighting the importance of other factors in structuring sponge-associated bacterial communities.


Subject(s)
Microbiota , Porifera , Animals , Biodiversity , Phylogeny , Bacteria/genetics , Seawater/microbiology , Water , RNA, Ribosomal, 16S/genetics
2.
Microb Ecol ; 80(1): 103-119, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31932882

ABSTRACT

In the present study, we assessed prokaryotic communities of demosponges, a calcareous sponge, octocorals, sediment and seawater in coral reef habitat of the central Red Sea, including endemic species and species new to science. Goals of the study were to compare the prokaryotic communities of demosponges with the calcareous sponge and octocorals and to assign preliminary high microbial abundance (HMA) or low microbial abundance (LMA) status to the sponge species based on compositional trait data. Based on the compositional data, we were able to assign preliminary LMA or HMA status to all sponge species. Certain species, however, had traits of both LMA and HMA species. For example, the sponge Ectyoplasia coccinea, which appeared to be a LMA species, had traits, including a relatively high abundance of Chloroflexi members, that were more typical of HMA species. This included dominant OTUs assigned to two different classes within the Chloroflexi. The calcareous sponge clustered together with seawater, the known LMA sponge Stylissa carteri and other presumable LMA species. The two dominant OTUs of this species were assigned to the Deltaproteobacteria and had no close relatives in the GenBank database. The octocoral species in the present study had prokaryotic communities that were distinct from sediment, seawater and all sponge species. These were characterised by OTUs assigned to the orders Rhodospirillales, Cellvibrionales, Spirochaetales and the genus Endozoicomonas, which were rare or absent in samples from other biotopes.


Subject(s)
Anthozoa/microbiology , Archaea/physiology , Bacteria/isolation & purification , Geologic Sediments/microbiology , Porifera/microbiology , Seawater/microbiology , Animals , Archaea/classification , Archaea/isolation & purification , Bacteria/classification , Bacterial Physiological Phenomena , Indian Ocean , Microbiota , Saudi Arabia
3.
FEMS Microbiol Ecol ; 95(12)2019 12 01.
Article in English | MEDLINE | ID: mdl-31633774

ABSTRACT

In the present study, we used Illumina sequencing to explore the prokaryote communities of 17 demosponge species and how they compare with bacterial mat, sediment and seawater samples (all sampled from coral reef habitat in Taiwan and Thailand). The studied sponge species formed three clusters. Operational taxonomic unit (OTU) richness and evenness were by far highest in the sediment and bacterial mat biotopes. There were pronounced differences in OTU richness and evenness among clusters and also considerable variation among certain host species within clusters. Additionally, the relative abundance of some prokaryotic taxa also differed among clusters with Poribacteria, e.g., being recorded in all sponge species, but with very low relative abundances in species of two of the three clusters. This sponge-associated phylum was, however, recorded at relatively high mean abundance in bacterial mat samples, which also housed relatively high abundances of actinobacterial and Chloroflexi members. Our results support high microbial abundance (HMA) status of the species Aaptos lobata, Hyrtios erectus, Pseudoceratina purpurea and Xestospongia testudinaria and low microbial abundance (LMA) status of the species Acanthella cavernosa, Echinodictyum asperum, Jaspis splendens, Ptilocaulis spiculifer, Stylissa carteri and Suberites diversicolor. Other species (Agelas cavernosa, Agelas nemoechinata, Acanthostylotella cornuta, Paratetilla sp., Hymeniacidon sp. and Haliclona cymaeformis) deviated somewhat from the typical HMA/LMA dichotomy and formed a strongly supported cluster.


Subject(s)
Anthozoa/microbiology , Bacteria/classification , Bacteria/isolation & purification , Porifera/microbiology , Animals , Bacteria/genetics , Biodiversity , Coral Reefs , Ecosystem , Phylogeny , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Taiwan , Thailand
4.
Antonie Van Leeuwenhoek ; 111(2): 237-257, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29027059

ABSTRACT

Anchialine lakes are a globally rare and unique ecosystem consisting of saline lakes surrounded by land and isolated from the surrounding marine environment. These lakes host a unique flora and fauna including numerous endemic species. Relatively few studies have, however, studied the prokaryote communities present in these lakes and compared them with the surrounding 'open water' marine environment. In the present study, we used a 16S rRNA gene barcoded pyrosequencing approach to examine prokaryote (Bacteria and Archaea) composition in three distinct biotopes (sediment, water and the mussel Brachidontes sp.) inhabiting four habitats, namely, three marine lakes and the surrounding marine environment of Berau, Indonesia. Biotope and habitat proved significant predictors of variation in bacterial and archaeal composition and higher taxon abundance. Most bacterial sequences belonged to OTUs assigned to the Proteobacteria. Compared to sediment and water, mussels had relatively high abundances of the classes Mollicutes and Epsilonproteobacteria. Most archaeal sequences, in turn, belonged to OTUs assigned to the Crenarchaeota with the relative abundance of crenarchaeotes highest in mussel samples. For both Bacteria and Archaea, the main variation in composition was between water samples on the one hand and sediment and mussel samples on the other. Sediment and mussels also shared much more OTUs than either shared with water. Abundant bacterial OTUs in mussels were related to organisms previously obtained from corals, oysters and the deepsea mussel Bathymodiolus manusensis. Abundant archaeal OTUs in mussels, in contrast, were closely related to organisms previously obtained from sediment.


Subject(s)
Archaea/classification , Bacteria/classification , Bivalvia/microbiology , Geologic Sediments/microbiology , Lakes/microbiology , Water Microbiology , Animals , Geography , High-Throughput Nucleotide Sequencing , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
5.
Microb Ecol ; 75(1): 239-254, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28699015

ABSTRACT

Previously, it was believed that the prokaryote communities of typical 'low-microbial abundance' (LMA) or 'non-symbiont harboring' sponges were merely subsets of the prokaryote plankton community. Recent research has, however, shown that these sponges are dominated by particular clades of Proteobacteria or Cyanobacteria. Here, we expand on this research and assess the composition and putative functional profiles of prokaryotic communities from LMA sponges collected in two ecosystems (coral reef and hydrothermal vent) from vicinal islands of Taiwan with distinct physicochemical conditions. Six sponge species identified as Acanthella cavernosa (Bubarida), Echinodictyum asperum, Ptilocaulis spiculifer (Axinellida), Jaspis splendens (Tetractinellida), Stylissa carteri (Scopalinida) and Suberites sp. (Suberitida) were sampled in coral reefs in the Penghu archipelago. One sponge species provisionally identified as Hymeniacidon novo spec. (Suberitida) was sampled in hydrothermal vent habitat. Each sponge was dominated by a limited set of operational taxonomic units which were similar to sequences from organisms previously obtained from other LMA sponges. There was a distinct bacterial community between sponges collected in coral reef and in hydrothermal vents. The putative functional profile revealed that the prokaryote community from sponges collected in hydrothermal vents was significantly enriched for pathways related to DNA replication and repair.


Subject(s)
Bacteria/isolation & purification , Hydrothermal Vents/microbiology , Porifera/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Biodiversity , Coral Reefs , Ecosystem , Phylogeny , Porifera/classification , Taiwan
6.
Mar Pollut Bull ; 110(2): 701-17, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27179997

ABSTRACT

Substrate cover, water quality parameters and assemblages of corals, fishes, sponges, echinoderms, ascidians, molluscs, benthic foraminifera and macroalgae were sampled across a pronounced environmental gradient in the Jakarta Bay-Thousand Islands reef complex. Inshore sites mainly consisted of sand, rubble and turf algae with elevated temperature, dissolved oxygen, pH and chlorophyll concentrations and depauperate assemblages of all taxa. Live coral cover was very low inshore and mainly consisted of sparse massive coral heads and a few encrusting species. Faunal assemblages were more speciose and compositionally distinct mid- and offshore compared to inshore. There were, however, small-scale differences among taxa. Certain midshore sites, for example, housed assemblages resembling those typical of the inshore environment but this differed depending on the taxon. Substrate, water quality and spatial variables together explained from 31% (molluscs) to 72% (foraminifera) of the variation in composition. In general, satellite-derived parameters outperformed locally measured parameters.


Subject(s)
Anthozoa/growth & development , Aquatic Organisms/classification , Bays/chemistry , Environmental Monitoring/methods , Seawater/chemistry , Animals , Anthozoa/drug effects , Aquatic Organisms/drug effects , Aquatic Organisms/growth & development , Biodiversity , Coral Reefs , Echinodermata/growth & development , Ecosystem , Fishes/growth & development , Foraminifera/growth & development , Indonesia , Islands , Mollusca/growth & development , Porifera/growth & development , Seaweed/growth & development , Urbanization , Urochordata/growth & development , Water Quality
7.
Plant Biol (Stuttg) ; 18(5): 824-34, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27061465

ABSTRACT

In the present study, we used 16S rRNA barcoded pyrosequencing to investigate to what extent monospecific stands of different salt marsh plant species (Juncus maritimus and Spartina maritima), sampling site and temporal variation affect sediment bacterial communities. We also used a bioinformatics tool, PICRUSt, to predict metagenome gene functional content. Our results showed that bacterial community composition from monospecific stands of both plant species varied temporally, but both host plant species maintained compositionally distinct communities of bacteria. Juncus sediment was characterised by higher abundances of Alphaproteobacteria, Myxococcales, Rhodospirillales, NB1-j and Ignavibacteriales, while Spartina sediment was characterised by higher abundances of Anaerolineae, Synechococcophycidae, Desulfobacterales, SHA-20 and Rhodobacterales. The differences in composition and higher taxon abundance between the sediment bacterial communities of stands of both plant species may be expected to affect overall metabolic diversity. In line with this expectation, there were also differences in the predicted enrichment of selected metabolic pathways. In particular, bacterial communities of Juncus sediment were predicted to be enriched for pathways related to the degradation of various (xenobiotic) compounds. Bacterial communities of Spartina sediment in turn were predicted to be enriched for pathways related to the biosynthesis of various bioactive compounds. Our study highlights the differences in composition and predicted functions of sediment-associated bacterial communities from two different salt marsh plant species. Loss of salt marsh habitat may thus be expected to both adversely affect microbial diversity and ecosystem functioning and have consequences for environmental processes such as nutrient cycling and pollutant remediation.


Subject(s)
Bacteria/classification , Geologic Sediments/microbiology , Magnoliopsida/microbiology , Metagenomics , Microbial Consortia , Poaceae/microbiology , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Biodiversity , DNA Barcoding, Taxonomic , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Ecosystem , Geography , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...