Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Geochem Health ; 46(4): 133, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483667

ABSTRACT

Thermal waters in Topusko (Croatia), with temperatures of up to 65 °C, have been used for heating, health, and recreational tourism for the past fifty years. Hydrogeochemical monitoring can provide insights into deeper geological processes and indicate system changes from baseline levels. It helps to identify potential anthropogenic impacts, as well as natural changes. Hydrogeochemical, geothermometrical, and environmental isotope studies of thermal waters in Topusko were conducted to improve the existing conceptual model of the Topusko hydrothermal system (THS), providing a baseline for continuous monitoring of the thermal resource. 2-year thermal springs and precipitation monitoring took place from March 2021 until March 2023. Major anions and cations, stable and radioactive isotopes (i.e. 18O, 2H, SO42-, 3H and 14C) and geothermometers were used to assess the origin of thermal waters in Topusko and their interaction with thermal aquifer. The results indicate the meteoric origin of thermal water, which was recharged in colder climatic conditions around the late Pleistocene-Early Holocene. Thermal water was last in contact with the atmosphere before approximately 9.5 kyr. Ca-HCO3 hydrochemical facies suggests carbonate dissolution as the dominant process driving the solute content. Geothermometrical results indicate an equilibrium temperature in the reservoir of 90 °C.


Subject(s)
Groundwater , Water Pollutants, Chemical , Environmental Monitoring/methods , Croatia , Groundwater/chemistry , Isotopes , Water , Water Pollutants, Chemical/analysis
2.
Environ Geochem Health ; 44(7): 2135-2162, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34269957

ABSTRACT

Renewable natural resources are strategic for reducing greenhouse gas emissions and the human footprint. The renewability of these resources is a crucial aspect that should be evaluated in utilization of scenario planning. The renewability of geothermal resources is strictly related to the physical and geological processes that favor water circulation and heating. In the Veneto region (NE Italy), thermal waters of the Euganean Geothermal System are the most profitable regional geothermal resource, and its renewability assessment entails the evaluation of fluid and heat recharge, regional and local geological settings, and physical processes controlling system development. This renewability assessment is aimed at defining both the importance of such components and the resource amount that can be exploited without compromising its future preservation. In the second part of the twentieth century, the Euganean thermal resource was threatened by severe overexploitation that caused a sharp decrease in the potentiometric level of the thermal aquifers. Consequently, regulation for their exploitation is required. In this work, the renewability of the Euganean Geothermal System was assessed using the results from numerical simulations of fluid flow and heat transport. The simulations were based on a detailed hydrogeological reconstruction that reproduced major regional geological heterogeneities through a 3D unstructured mesh, while a heterogeneous permeability field was used to reproduce the local fracturing of the thermal aquifers. The model results highlight the role played by the resolved structural elements, in particular the subsurface high-angle faults of the exploitation field, and by the anomalous regional crustal heat flow affecting the central Veneto region.


Subject(s)
Groundwater , Geological Phenomena , Geology , Heating , Hot Temperature , Humans
3.
Sci Total Environ ; 598: 330-340, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28448925

ABSTRACT

The Natural Background Level (NBL), suggested by UE BRIDGE project, is suited for spatially distributed datasets providing a regional value that could be higher than the Threshold Value (TV) set by every country. In hydro-geochemically dis-homogeneous areas, the use of a unique regional NBL, higher than TV, could arise problems to distinguish between natural occurrences and anthropogenic contaminant sources. Hence, the goal of this study is to improve the NBL definition employing a geostatistical approach, which reconstructs the contaminant spatial structure accounting geochemical and hydrogeological relationships. This integrated mapping is fundamental to evaluate the contaminant's distribution impact on the NBL, giving indications to improve it. We decided to test this method on the Drainage Basin of Venice Lagoon (DBVL, NE Italy), where the existing NBL is seven times higher than the TV. This area is notoriously affected by naturally occurring arsenic contamination. An available geochemical dataset collected by 50 piezometers was used to reconstruct the spatial distribution of arsenic in the densely populated area of the DBVL. A cokriging approach was applied exploiting the geochemical relationships among As, Fe and NH4+. The obtained spatial predictions of arsenic concentrations were divided into three different zones: i) areas with an As concentration lower than the TV, ii) areas with an As concentration between the TV and the median of the values higher than the TV, and iii) areas with an As concentration higher than the median. Following the BRIDGE suggestions, where enough samples were available, the 90th percentile for each zone was calculated to obtain a local NBL (LNBL). Differently from the original NBL, this local value gives more detailed water quality information accounting the hydrogeological and geochemical setting, and contaminant spatial variation. Hence, the LNBL could give more indications about the distinction between natural occurrence and anthropogenic contamination.

4.
Phys Chem Chem Phys ; 12(4): 871-80, 2010 Jan 28.
Article in English | MEDLINE | ID: mdl-20066372

ABSTRACT

Porphyrins and their metal complexes are particularly well suitable for applications in photoelectronics, sensing, energy production, because of their chemical, electronic and optical properties. The understanding of the electronic properties of the pristine molecule is of great relevance for the study and application of the wide class of these compounds. This is notably important for the recently achieved in-vacuo synthesis of organo-metallic thin films directly from the pure free base organic-inorganic precursors in the vapor phase, and its interpretation by means of surface electron spectroscopies. We report on a combined experimental and theoretical study of the physical/chemical properties of tetraphenylporphyrin, H(2)TPP, deposited on the SiO(2)/Si(100) native oxide surface by supersonic molecular beam deposition (SuMBD). Valence states and 1s core level emissions of carbon and nitrogen have been investigated with surface photoelectron spectroscopies by using synchrotron radiation light. The interpretation of the spectra has been guided by density functional numerical experiments on the gas-phase molecule. Non-relativistic calculations were carried out for the valence states, whereas a two component relativistic approach in the zeroth-order regular approximation was used to investigate the core levels. The good agreement between theoretical and experimental analysis results in a comprehensive overview of the chemical properties of the H(2)TPP molecule, highly improving reliability in the interpretation of experimental photoemission spectra.

SELECTION OF CITATIONS
SEARCH DETAIL
...