Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Plant Cell Rep ; 22(7): 478-82, 2004 Feb.
Article in English | MEDLINE | ID: mdl-15034747

ABSTRACT

Modern genetic analysis and manipulation of soybean ( Glycine max) depend heavily on an efficient and dependable transformation process, especially in public genotypes from which expressed sequence tag (EST), bacterial artificial chromosome and microarray data have been derived. Williams 82 is the subject of EST and functional genomics analyses. However, it has not previously been transformed successfully using either somatic embryogenesis-based or cotyledonary-node transformation methods, the two predominant soybean transformation systems. An advance has recently been made in using antioxidants to enhance Agrobacterium infection of soybean. Nonetheless, an undesirable effect of using these antioxidants is the compromised recovery of transgenic soybean when combined with the use of the herbicide glufosinate as a selective agent. Therefore, we optimized both Agrobacterium infection and glufosinate selection in the presence of L-cysteine for Williams 82. We have recovered transgenic lines of this genotype with an enhanced transformation efficiency using this herbicide selection system.


Subject(s)
Glycine max/genetics , Aminobutyrates/pharmacology , Antioxidants/pharmacology , Herbicides/pharmacology , Plants, Genetically Modified , Rhizobium/genetics , Glycine max/drug effects , Transformation, Genetic/drug effects
2.
Mol Genet Genomics ; 268(4): 525-34, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12471450

ABSTRACT

Plant orthologs of the bacterial urease accessory genes ureD and ureF, which are required for the insertion of the nickel ion at the active site, have been isolated from soybean ( Glycine max L. Merr.), tomato ( Lycopersicon esculentum) and Arabidopsis thaliana. The functionality of soybean UreD and UreF was tested by measuring their ability to complement urease-negative mutants of Schizosaccharomyces pombe, a eukaryote which produces a "plant-like" urease of ~90 kDa. The S. pombe ure4 mutant was complemented by a 12-kb fragment of S. pombe genomic DNA, which was shown by PCR to contain a putative ureD gene. However, ure4 was not complemented by a UreD cDNA soybean, expressed under the control of a strong promoter. In contrast, an S. pombe ure3 mutation was complemented by both a 10-kb fragment of S. pombe DNA containing ureF and the UreF cDNA from soybean. Soybean Eu2 is a candidate urease accessory gene; its product cooperates with the Eu3 protein in activating apourease in vitro. However, the sequences of UreD and UreF transcripts from two eu2/eu2 mutants, recovered as RT-PCR products, revealed no mutational alteration, suggesting that Eu2 encodes neither UreD nor UreF.


Subject(s)
Glycine max/enzymology , Schizosaccharomyces/enzymology , Urease/metabolism , Urease/physiology , Amino Acid Sequence , Arabidopsis/enzymology , Arabidopsis/genetics , Bacterial Proteins/physiology , Carrier Proteins/physiology , DNA Primers/chemistry , Enzyme Activation , Gene Expression Regulation, Bacterial , Genetic Complementation Test , In Vitro Techniques , Solanum lycopersicum/genetics , Molecular Sequence Data , Nickel , Phosphate-Binding Proteins , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Urease/genetics
3.
Planta ; 210(4): 652-8, 2000 Mar.
Article in English | MEDLINE | ID: mdl-10787060

ABSTRACT

Arginase (EC 3.5.3.1) localization was studied in soybean (Glycine max L.) seedling cotyledons. Subcellular fractionation in a discontinuous Percoll gradient showed that arginase was localized in the mitochondrion. Arginine (Arg) uptake by mitochondria was demonstrated by co-sedimentation of [3H]Arg-derived label and the mitochondrial marker enzyme cytochrome c oxidase. Arginine uptake was complete in about 10 min. Since detergent but not NaCl released most label, we conclude that Arg was taken up and not bound to the organellar surface. Arginine transport was not saturable, at least up to 20 mM. Basic amino acids were the best inhibitors of Arg uptake. The uncoupler 2,4-dinitrophenol did not inhibit Arg uptake. At least 30% of L-[guanido-14C]Arg taken up by mitochondria was degraded by arginase in seedling cotyledons, while little or no degradation was detected in mitochondria from developing embryos, even though the Arg uptake level was similar in both mitochondrial preparations. These results are consistent with our previously reported pattern of arginase expression and urea accumulation during embryo development and seed germination (A. Goldraij and J.C. Polacco, 1999, Plant Physiol. 119: 297-303). The lack of Arg degradation allows developing embryos to conserve Arg, the main N-reserve amino acid utilized by germinating soybean.


Subject(s)
Arginase/metabolism , Arginine/metabolism , Glycine max/metabolism , Mitochondria/metabolism , 2,4-Dinitrophenol/pharmacology , Biological Transport , Cotyledon/enzymology , Cotyledon/metabolism , Mitochondria/enzymology , Glycine max/enzymology , Uncoupling Agents/pharmacology
4.
Plant J ; 21(1): 53-60, 2000 Jan.
Article in English | MEDLINE | ID: mdl-10652150

ABSTRACT

Mutation in Eu3 eliminates activity of both soybean ureases, the embryo-specific (encoded by Eu1) and the tissue-ubiquitous (encoded by Eu4). eu3-e1 is a completely recessive null allele. Eu3-e3 is a semi-dominant specifying 0.1% wild-type urease activity in the homozygous state and 5-10% as a heterozygote (Meyer-Bothling et al. 1987). Antibodies to plant UreG, a homologue of the bacterial urease accessory protein, revealed a 32 kDa protein (p32) in embryos of the Eu3/Eu3 precursor genotype. p32 is identical to UreG by the criteria of size, antigenicity, and its ability to bind Ni2+, a trait expected from the deduced histidine-rich N-terminus of UreG. UreG was absent in eu3-e1/eu3-e1, and lack of UreG co-segregated with eu3-e1. Eu3-e3 specified a UreG transcript which coded valine in place of alanine at residue 142 (A142V) confirming thatEu3 encodes UreG, which is renamed Eu3. Eu3 (A142V) retained Ni-binding ability. Eu3 is directly involved in urease activation, since anti-Eu3 (UreG) antibodies inhibited the in vitro activation of urease. Eu1 (embryo urease) and Eu3 accumulated in parallel in the developing embryo. The presence of Eu1 was not necessary for the high embryonic level of Eu3. However, the presence of Eu3 appeared to be important for accumulation of Eu1, perhaps by stabilizing it by Ni insertion. At the level of sensitivity employed Eu3 was detected in crude extracts of embryos but not non-embryonic tissues which have 1/500th the embryo urease activity. Functional Eu3, however, is necessary for activation of the ubiquitous urease in non-embryonic tissues.


Subject(s)
Carrier Proteins/genetics , Glycine max/genetics , Nickel/metabolism , Soybean Proteins , Urease/metabolism , Amino Acid Sequence , DNA, Complementary , Enzyme Activation , GTP Phosphohydrolases , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Molecular Sequence Data , Nucleotides/metabolism , Protein Binding , Sequence Homology, Amino Acid
5.
Plant Physiol ; 119(1): 297-304, 1999 Jan.
Article in English | MEDLINE | ID: mdl-9880372

ABSTRACT

Arginase (EC 3.5.3.1) transcript level and activity were measured in soybean (Glycine max L.) embryos from the reserve deposition stage to postgermination. Using a cDNA probe for a small soybean arginase gene family, no transcript was detected in developing embryos. However, arginase transcripts increased sharply on germination, reaching a maximum at 3 to 5 d after germination. There was low but measurable in vitro arginase specific activity in developing embryos (less than 6% of seedling maximum). During germination arginase specific activity increased in parallel with the sharply increasing arginase transcript level. Seedling arginase activity was largely localized in cotyledons. Arginase activity was assayed in vivo by measuring urea accumulation in a urease-deficient mutant. No urea was detected in developing embryos, whereas accumulated urea paralleled arginase specific activity and transcript level in germinating seedlings. As in planta embryos, cultured cotyledons did not accumulate urea when arginine (Arg) was provided with other amino acids in a "mock" seed-coat exudate. Arg as the sole nitrogen source was converted to urea but did not support cotyledon growth. There appeared to be a lack of recruitment of the low-level arginase activity to hydrolyze free Arg in developing embryos, thus avoiding a futile urea cycle.


Subject(s)
Arginase/genetics , Arginase/metabolism , Glycine max/enzymology , Glycine max/genetics , Amino Acid Sequence , Cotyledon/enzymology , DNA, Complementary/genetics , Germination , Molecular Sequence Data , Seeds/enzymology , Sequence Homology, Amino Acid , Glycine max/embryology
6.
Plant Physiol ; 109(1): 169-175, 1995 Sep.
Article in English | MEDLINE | ID: mdl-12228587

ABSTRACT

The hypothesis that soybean (Glycine max L. [Merrill]) catabolizes ureides to urea to a physiologically significant extent was tested and rejected. Urease-negative (eu3-e1/eu3-e1) plants were supported by fixed N2 or by 2 mM NH4NO3, so that xylem-borne nitrogen contained predominantly ureides (allantoin and allantoic acid) or amide amino acids, respectively. Seed nitrogen yield was equal on either nitrogen regime, although 35-d-old fixing plants accumulated about 6 times more leaf urea. In callus, lack of an active urease reduced growth on either arginine or allantoin as the sole nitrogen source, but the reduction was greater on arginine (73%) than on allantoin (39%). Furthermore, urease-negative cells accumulated 17 times more urea than urease-positive cells on arginine; for allantoin the ratio was 1.8. Urease-negative callus accumulated urea at 3% the rate of seedlings. To test whether urea accumulating in urease-negative seedlings was derived from ureides, seeds were first allowed to imbibe in 1 mM allopurinol, an inhibitor of ureide formation. Seedling ureides were decreased by 90%, but urea levels were unchanged. Thus, ureides are poor precursors of urea, which was confirmed in seedlings that converted no more than 5% of seed-absorbed [14C-ureido]allantoate to [14C]urea, whereas 40 to 70% of [14C-guanido]arginine was recovered as [14C]urea.

7.
Plant Physiol ; 107(4): 1097-103, 1995 Apr.
Article in English | MEDLINE | ID: mdl-7770520

ABSTRACT

In Arabidopsis thaliana, urease transcript levels increased sharply between 2 and 4 d after germination (DAG) and were maintained at maximal levels until at least 8 DAG. Seed urease specific activity declined upon germination but began to increase in seedlings 2 DAG, reaching approximately 75% of seed activity by 8 DAG. Urea levels showed a small transient increase 1 DAG and then approximately paralleled urease activity, reaching maximal levels at approximately 9 DAG. Urease inhibition with phenylphosphorodiamidate resulted in a 2- to 4-fold increase in urea levels throughout seedling development. Arginine pools (0-8 DAG) changed approximately in parallel with the urea pool. Consistent with arginine being a major source of urea, arginase activity increased 10-fold in the interval 0 to 6 DAG. Allopurinol, a xanthine dehydrogenase inhibitor, had no effect on urea levels up to 3 DAG but reduced the urea pool by 30 to 40% during the interval 5 to 8 DAG, suggesting that purine degradation contributed to the urea pool well after germination, if at all. in aged Arabidopsis seeds, there was correlation between phenylphosphorodiamidate inactivation of urease and germination inhibition, the latter overcome by NH4NO3 or amino acids. Since urease activity, urea precursor, and urea increase in young seedlings, and since urease inactivation results in a nitrogen-reversible inhibition of germination, we propose that urease recycles urea-nitrogen in the seedling.


Subject(s)
Arabidopsis/metabolism , Nitrogen/metabolism , Urease/metabolism , Allopurinol/pharmacology , Arabidopsis/genetics , Arabidopsis/growth & development , Arginine/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , Restriction Mapping , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , Urea/metabolism , Urease/antagonists & inhibitors , Urease/genetics
9.
Mol Gen Genet ; 242(4): 404-14, 1994 Feb.
Article in English | MEDLINE | ID: mdl-7907165

ABSTRACT

We sought to determine the genetic basis of expression of the ubiquitous (metabolic) urease of soybean. This isozyme is termed the metabolic urease because its loss, in eu4/eu4 mutants, leads to accumulation of urea, whereas loss of the embryo-specific urease isozyme does not. The eu4 lesion eliminated the expression of the ubiquitous urease in vegetative and embryonic tissues. RFLP analysis placed urease clone LC4 near, or within, the Eu4 locus. Sequence comparison of urease proteins (ubiquitous and embryo-specific) and clones (LC4 and LS1) indicated that LC4 and LS1 encode ubiquitous and embryo-specific ureases, respectively. That LC4 is transcribed into poly(A)+ RNA in all tissues was indicated by the amplification of its transcript by an LC4-specific PCR primer. (The LS1-specific primer, on the other hand, amplified poly(A)+ RNA only from developing embryos expressing the embryo-specific urease.) These observations are consistent with Eu4 being the ubiquitous urease structural gene contained in the LC4 clone. In agreement with this notion, the mutant phenotype of eu4/eu4 callus was partially corrected by the LC4 urease gene introduced by particle bombardment.


Subject(s)
Genes, Plant , Glycine max/genetics , Urease/genetics , Amino Acid Sequence , Base Sequence , Isoenzymes , Molecular Sequence Data , Mutation , Poly A/metabolism , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Seeds/enzymology , Sequence Alignment
10.
Plant Physiol ; 98(3): 942-8, 1992 Mar.
Article in English | MEDLINE | ID: mdl-16668768

ABSTRACT

Mutation at either of two genetic loci (Eu2 or Eu3) in soybean (Glycine max [L.] Merr.) results in a pleiotropic elimination of the activity of both major urease isozymes. Surprisingly, the phenotype of a phylloplane bacterium, Methylobacterium mesophilicum, living on the leaves of eu2/eu2 or eu3-e1/eu3-e1 mutants is also affected by these plant mutations. The bacteria isolated from leaves of these soybean mutants have transient urease- and hydrogenase-deficient phenotypes that can be corrected by the addition of nickel to free-living cultures. The same bacterium growing on wild-type soybeans or on urease mutants eu1-sun/eu1-sun or eu4/eu4, each deficient in only one urease isozyme, are urease-positive. These results suggest that the bacterium living on the eu2/eu2 or eu3-e1/eu3-e1 mutant is unable to produce an active urease or hydrogenase because it is effectively starved for nickel. We infer that mutations at Eu2 or Eu3 result in defects in nickel metabolism but not in Ni(2+) uptake or transport, because eu2/eu2 and eu3-e1/eu3-e1 mutants exhibit normal uptake of (63)NiCl(2). Moreover, wild-type plants grafted on mutant rootstocks produce seeds with fully active urease, indicating unimpeded transport of nickel through mutant roots and stems.

11.
Plant Physiol ; 97(3): 1004-10, 1991 Nov.
Article in English | MEDLINE | ID: mdl-16668483

ABSTRACT

We assayed the in vivo activity of the ureases of soybean (Glycine max) embryos by genetically eliminating the abundant embryo-specific urease, the ubiquitous urease, or a background urease. Mutant embryos accumulated urea (250-fold over progenitor) only when lacking all three ureases and only when developed on plants lacking the ubiquitous urease. Thus, embryo urea is generated in maternal tissue where its accumulation is not mitigated by the background urease. However, the background urease can hydrolyze virtually all urea delivered to the developing embryo. Radicles of 2-day-old germinants accumulated urea in the presence or absence of the embryo-specific urease (2 micromoles per gram dry weight radicle). However, mutants lacking the ubiquitous urease exhibited increased accumulation of urea (to 4-5 micromoles urea per gram dry weight radicle). Thus, the ubiquitous and not the embryo-specific urease hydrolyzes urea generated during germination. In the absence of both of these ureases, the background urease activity (4% of ubiquitous urease) may hydrolyze most of the urea generated. A pleiotropic mutant lacking all urease accumulated 34 micromoles urea per gram dry weight radicle (increasing 2.5-fold at 3 days after germination). Urea (20 millimolar) was toxic to in vitro-cultured cotyledons which contained active embryo-specific urease. Cotyledons lacking the embryo-specific urease accumulated more protein when grown with urea than with no nitrogen source. Among cotyledons lacking the embryo-specific urease, fresh weight increases were virtually unchanged whether grown on urea or on no nitrogen and whether in the presence or absence of the ubiquitous urease. However, elimination of the ubiquitous urease reduced protein deposition on urea-N, and elimination of both the ubiquitous and background ureases further reduced urea-derived protein. The evidence is consistent with the lack of a role in urea hydrolysis for the embryo-specific urease in developing embryos or germinating seeds. Because the embryo-specific urease is deleterious to cotyledons cultured in vitro on urea-N, its role may be to hydrolyze urea in wounded or infected embryos, creating a hostile environment for pest or pathogen. While the ubiquitous urease is operative in leaves and in seedlings, all or most of its function can be assumed by the background urease in embryos and in seedlings.

12.
Plant Physiol ; 94(2): 681-9, 1990 Oct.
Article in English | MEDLINE | ID: mdl-16667765

ABSTRACT

Roots of young soybean (Glycine max [L.] Merr.) plants (up to 25 days old) contain two distinct urease isozymes, which are separable by hydroxyapatite chromatography. These two urease species (URE1 and URE2) differ in: (a) electrophoretic mobility in native gels, (b) pH dependence, and (c) recognition by a monoclonal antibody specific for the seed ("embryo-specific") urease. By these parameters root URE1 urease is similar to the abundant embryo-specific urease isozyme, while root URE2 resembles the "ubiquitous" urease which has previously been found in all soybean tissues examined (leaf, embryo, seed coat, and cultured cells). The embryo-specific and ubiquitous urease isozymes are products of the Eu1 and Eu4 structural genes, respectively. Roots of the eu1-sun/eu1-sun genotype, which lacks the embryo-specific urease (i.e. ;seed urease-null'), contain no URE1 urease activity. Roots of eu4/eu4, which lacks ubiquitous urease, lack the URE2 (leaflike) urease activity. From these genetic and biochemical criteria, then, we conclude that URE1 and URE2 are the embryo-specific and ubiquitous ureases, respectively. Adventitious roots generated from cuttings of any urease genotype lack URE1 activity. In seedling roots the seedlike (URE1) activity declines during development. Roots of 3-week-old plants contain 5% of the total URE1 activity of the radicle of 4-day-old seedlings, which, in turn, has approximately the same urease activity level as the dormant embryonic axis. The embryo-specific urease incorporates label from [(35)S]methionine during embryo development but not during germination, indicating that there is no de novo synthesis of the embryo-specific (URE1) urease in the germinating root. We conclude that the seedlike urease (URE1) found in roots of young soybean plants is a remnant of the Eu1-encoded, abundant, embryo-specific urease which accumulates in the embryonic root axis during seed development.

13.
Plant Physiol ; 90(1): 285-90, 1989 May.
Article in English | MEDLINE | ID: mdl-16666750

ABSTRACT

Three lipoxygenase isozymes are synthesized in developing soybean (Glycine max [L.] Merr. cv Williams) embryos and are found in high levels in cotyledons of mature seeds (B Axelrod, TM Cheesbrough, S Zimmer [1981] Methods Enzymol 71: 441-451). Upon germination at least two new protein species appear which are localized mainly (on a protein basis) in the hypocotyl/radicle section. These lipoxygenase species appear also in seedlings of each of three lipoxygenase nulls (1x1, 1x2, and 1x3) deficient in one of the dormant seed lipoxygenases. The germination-associated species are distinguishable from dry seed lipoxygenase by their more acidic isoelectric points as revealed in isoelectric focusing gels. They are active from as early as 2 to at least 5 days after the start of imbibition. These germination-stimulated species qualify as lipoxygenase by their inhibition by the lipoxygenase inhibitors n-propyl gallate and salicyl hydroxamic acid and their lack of inhibition by KCN. Further, they are not active on the peroxidase substrate pair H(2)O(2)/3-amino-9-ethyl carbazole. They are recognized on Western blots by polyclonal antibodies to the seed lipoxygenase-1 isozyme and the major induced species has a molecular weight of approximately 100,000, similar to that of the cotyledon lipoxygenases. These lipoxygenases appear to be synthesized de novo upon germination since they comigrate with radioactive protein species from seeds germinated in [(35)S]methionine.

15.
Mol Gen Genet ; 209(3): 432-8, 1987 Oct.
Article in English | MEDLINE | ID: mdl-17193706

ABSTRACT

Two new soybean [Glycine max (L.) Merr. cv. Williams] loci, designated Eu2 and Eu3, were identified in which ethyl methanesulfonate (EMS)-induced mutation eliminated urease activity. These loci showed no linkage to each other or to the "Sun-Eul" locus described in the accompanying paper (Meyer-Bothling and Polacco 1987). Unlike sun (seed urease-null) mutations those at Eu2 and Eu3 affected both urease isozymes: the embryo-specific (seed) and the ubiquitous (leaf) urease. The eu2/eu2 mutant had no leaf activity and 0.6% normal seed activity. Two mutant Eu3 alleles were recovered, eu3-e1 and Eu3-e3. The eu3-e1/eu3-e1 genotype lacked both activities while Eu3-e3/Eu3-e3 had coordinately reduced leaf (0.1%) and seed (0.1%) activities. Only the Eu3-e3 mutation showed partial dominance, yielding about 5%-10% normal activity for each urease in the heterozygous state. Each homozygous mutant contained normal levels of embryo-specific urease mRNA and protein subunit, both of normal size. However, urease polymerization was aberrant in all three mutants. In all cases where urease could be measured, it was found to be temperature sensitive and, in addition, the embryo-specific urease of Eu3-e3/Eu3-e3 had an altered pH dependence. These mutants may be defective in a urease maturation function common to both isozymes as suggested by the normal levels of urease gene product, coordinately (or nearly so) reduced urease isozyme activities, temperature sensitivity in both ureases (Eu3-e3) and the non-linkage of Eu2 and Eu3 to the locus encoding embryo-specific urease (Sun-Eul). Ubiquitous urease activity is reduced in mutant seed coat and callus culture as well as in leaf and cotyledon tissue. No mutant callus utilized urea (5 to 10 nM0 as sole nitrogen source. However, all mutant cell lines tolerated normally toxic levels of urea (25 to 250 mM) added to medium containing KNO3/NH4No3 as nitrogen source. Urea thus may be used in cell culture as a selection agent for phenotypes either lacking or regaining an active ubiquitous urease.


Subject(s)
Glycine max/genetics , Urease/genetics , Genes, Plant/genetics , Isoenzymes/genetics , Mutation/genetics , Glycine max/enzymology
16.
Mol Gen Genet ; 209(3): 439-44, 1987 Oct.
Article in English | MEDLINE | ID: mdl-17193707

ABSTRACT

By a non-destructive urease screen of M2 soybean (Glycine max [L.] Merr. cv. Williams) seeds, four true-breeding mutants (n4, n6, n7 and n8) were recovered which lack most (n6, n8) or all (n4, n7) embryo-specific urease activity. This trait was due to a single, recessive lesion at the Sun (seed urease-null) locus identified earlier in an exotic germplasm (PI 229324, Itachi). All sun mutants produced normal ubiquitous urease, the low abundance isozyme found in all soybean tissues examined. Tight mutants n4 and n7 accumulated no detectable embryo-specific urease protein or mRNA; n6 and n8 accumulated normal or near normal levels of urease mRNA but had seed urease protein levels approximately 5% and .05%, respectively, of the progenitor. Mutant n8 appeared to produce a low level of fully active urease (approximately 0.7% activity level, approximately 0.5% protein level) while n6 produced a higher level of an altered, nearly inactive urease (.0.09% activity level, approximately 5% protein level). Urease alterations in n6 were manifested by its increased temperature sensitivity and variation in aggregation state and pH preference. Thus, mutations in the Sun locus affected both the level and the nature of the embryo-specific urease gene products indicating that Sun encodes the embryo-specific urease. We reported earlier that the Eul locus, which controls the aggregation state of the embryo-specific urease, is on mep unit from Sun and that the Eul allele is cis to sun is not expressed (Kloth et al. 1987). That the level of urease gene product, its aggregation state and other enzyme properties can be affected by induced sun mutations, suggests that the Eul and sun alleles are at the same locus.


Subject(s)
Glycine max/genetics , Urease/genetics , Genes, Plant/genetics , Isoenzymes/genetics , Mutation/genetics , RNA, Messenger/genetics , Seeds/enzymology , Seeds/genetics , Glycine max/enzymology
17.
Plant Physiol ; 83(3): 585-91, 1987 Mar.
Article in English | MEDLINE | ID: mdl-16665292

ABSTRACT

Allantoin catabolism studies have been extended to intact leaf tissue of soybean (Glycine max L. Merr.). Phenyl phosphordiamidate, one of the most potent urease inhibitors known, does not inhibit (14)CO(2) release from [2,7-(14)C]allantoin (urea labeled), but inhibits urea dependent CO(2) release >/=99.9% under similar conditions. Furthermore, (14)CO(2) and [(14)C] allantoate are the only detectable products of [2,7-(14)C]allantoin catabolism. Neither urea nor any other product were detected by analysis on HPLC organic acid or organic base columns although urea and all commercially available metabolites that have been implicated in allantoin and glyoxylate metabolism can be resolved by a combination of these two columns. In contrast, when allantoin was labeled in the two central, nonureido carbons ([4,5-(14)C]allantoin), its catabolism to [(14)C]allantoate, (14)CO(2), [(14)C]glyoxylate, [(14)C]glycine, and [(14)C]serine in leaf discs could be detected. These data are fully consistent with the metabolism of allantoate by two amidohydrolase reactions (neither of which is urease) that occur at similar rates to release glyoxylate, which in turn is metabolized via the photorespiratory pathway. This is the first evidence that allantoate is metabolized without urease action to NH(4) (+) and CO(2) and that carbons 4 and 5 enter the photorespiratory pathway.

18.
Gene ; 54(1): 41-50, 1987.
Article in English | MEDLINE | ID: mdl-3609752

ABSTRACT

We report the first isolation of a low-copy-number gene from a complex higher plant (soybean) genome by direct screening with synthetic oligodeoxynucleotide (oligo) probes. A synthetic, mixed, 21-nucleotide (nt) oligo (21-1) based on a seven amino acid (aa) sequence from soybean seed urease, was used to screen genomic libraries of soybean (Glycine max [L.] Merr.) in the lambda Charon 4 vector. Twenty homologous clones were recovered from a screen of 500,000 plaques. These were counterscreened with embryo-specific cDNA (15-2 cDNA) made by priming with a second, mixed 15-nt oligo (15-2), based on a Jack bean (Canavalia ensiformis) urease peptide [Takishima et al., J. Natl. Def. Med. Coll. 5 (1980) 19-23]. Five out of 20 clones were homologous to 15-2 cDNA and proved to be identical. Nucleotide sequence analysis of representative clone E15 confirmed that it contained urease sequences. Subclones of E15 homologous to the oligo probes contain a deduced amino acid sequence which matches 108 of 130 aa residues of an amino acid run in a recently published [Mamiya et al., Proc. Jap. Acad. 61B (1985) 359-398] complete protein sequence for Jack-bean seed urease. Using clone E15 as a probe of soybean embryonic mRNA revealed a homologous 3.8-kb species that is the size of the urease messenger. This species is absent from mRNA of embryos of a soybean seed urease-null mutant. However, both urease-positive and urease-null genomes contain the 11-kb DNA fragment bearing urease sequences.


Subject(s)
Plants/genetics , Urease/genetics , Amino Acid Sequence , Base Sequence , Cloning, Molecular , DNA/genetics , Nucleic Acid Hybridization , Oligodeoxyribonucleotides , Plants/enzymology , RNA, Messenger/genetics , Glycine max/enzymology , Glycine max/genetics
19.
Theor Appl Genet ; 73(3): 410-8, 1987 Jan.
Article in English | MEDLINE | ID: mdl-24241003

ABSTRACT

Four soybean seed urease nulls (lacking both the activity and antigen of the embryo-specific urease) were intermated and the F1 and F2 seed examined for urease activity. Both generations were without urease activity, and the nulls were therefore considered noncomplementing. In crosses of each null line to cultivars homozygous for the allelic, codominantly inherited urease slow or fast isozyme, the F1 seed expressed the embryo-specific urease isozyme of the urease-expressing parent. A 3 ∶ 1 segregation for presence and absence of urease was observed in progeny from F1 and heterozygous F2 plants. The F2 and F3 from fastXnull combinations revealed that urease-positive seed were all phenotypically urease fast, while the same seed from slowXnull combinations showed a segregation of one seed containing a fast urease, either exclusively or in a heterozygous state with the slow isozyme, for every 69 phenotypic slows. Data pooled from F2 plants which segregate for both the presence (Sun) and absence (Sun) of urease and for the fast (Eu1-b) or slow (Eu1-a) urease allele indicate that the null lesion (Sun) is linked to Eu1 by approximately one map unit. The evidence is consistent with two models: (1) sun is an allele at the embryo-specific urease isozyme locus (Eu1) and that a high degree of exchange (and/or conversion) within the locus results in a 1% recombination frequency between the null trait and urease allozyme; (2) sun is at a distinct locus which is separated by one map unit from the embryo-specific urease isozyme locus (Eu1) upon which it acts in the cis position. Polyadenylated embryo RNA from one of the null lines, PI 229324, exhibited no urease template activity in vitro. Thus, the lack of urease antigen is due to lack of accumulation of translatable urease mRNA. The availability of soybeans lacking seed urease should be extremely useful to breeders as a trait for linkage studies and to geneticists as a transformation marker.

20.
Plant Mol Biol ; 7(1): 11-23, 1986 Jan.
Article in English | MEDLINE | ID: mdl-24302153

ABSTRACT

Soybean (Glycine max L. [Merrill]) seed lipoxygenase cDNA clones were recovered from two cDNA libraries: a size-selected library in pBR322 and an expression library in pUC8. The pUC8 library was made with total poly(A)(+) embryo RNA and was screened with antiserum to lipoxygenase-1, one of 3 seed lipoxygenase isozymes. Three lipoxygenase antigen-producing clones were identified: two with identical cDNA inserts of 977 nucleotides representing an open-reading frame and a third truncated clone bearing a 3' end common to the longer clones. A long clone, pAL-134, was chosen for further study and was used to screen the size-selected cDNA library from which sixteen clones were identified. They fall into two homology classes represented by pLX-10 (ca. 1360 bp) and pLX-65 (2047 bp).The lipoxygenase expression clone pAL-134 hybridized much more strongly to pLX-65 than to pLX-10. pAL-134 and pLX-65 share 89% nucleotide homology and 75% deduced amino acid homology along their common sequence. Their deduced amino acid sequences each show 80% homology to sequences determined for isolated peptides of the lipoxygenase-1 isozyme.pAL-134 hybridizes poorly with a 3.8 kb RNA from LOX-1 null (lx1) embryos while pLX-65 hybridizes more strongly, but still to a lesser extent than its hybridization to standard embryo RNA or to RNA from embryos lacking lipoxygenase-2 (lx2) or lipoxygenase-3 (lx3) protein.The lx3 null lacks almost all embryo 3.8 kb RNA homologous to pLX-10. This hybridization pattern suggests that pLX-10 encodes LOX-3. Thus, the lx1 and lx3 genotypes accumulate little, if any, mRNA for the lipoxygenase-1 and lipoxygenase-3 isozymes, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...