Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sustain Cities Soc ; 75: 103336, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34513574

ABSTRACT

The outbreak of SARS CoV-2 (COVID-19) has posed a serious threat to human beings, society, and economic activities all over the world. Worldwide rigorous containment measures for limiting the spread of the virus have several beneficial environmental implications due to decreased anthropogenic emissions and air pollutants, which provide a unique opportunity to understand and quantify the human impact on atmospheric environment. In the present study, the associated changes in Land Surface Temperature (LST), aerosol, and atmospheric water vapor content were investigated over highly COVID-19 impacted areas, namely, Europe and North America. The key findings revealed a large-scale negative standardized LST anomaly during nighttime across Europe (-0.11 °C to -2.6 °C), USA (-0.70 °C) and Canada (-0.27 °C) in March-May of the pandemic year 2020 compared to the mean of 2015-2019, which can be partly ascribed to the lockdown effect. The reduced LST was corroborated with the negative anomaly of air temperature measured at meteorological stations (i.e. -0.46 °C to -0.96 °C). A larger decrease in nighttime LST was also seen in urban areas (by ∼1-2 °C) compared to rural landscapes, which suggests a weakness of the urban heat island effect during the lockdown period due to large decrease in absorbing aerosols and air pollutants. On the contrary, daytime LST increased over most parts of Europe due to less attenuation of solar radiation by atmospheric aerosols. Synoptic meteorological variability and several surface-related factors may mask these changes and significantly affect the variations in LST, aerosols and water vapor content. The changes in LST may be a temporary phenomenon during the lockdown but provides an excellent opportunity to investigate the effects of various forcing controlling factors in urban microclimate and a strong evidence base for potential environmental benefits through urban planning and policy implementation.

2.
Sci Rep ; 9(1): 9944, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31289295

ABSTRACT

Daily precipitation in California has been projected to become less frequent even as precipitation extremes intensify, leading to uncertainty in the overall response to climate warming. Precipitation extremes are historically associated with Atmospheric Rivers (ARs). Sixteen global climate models are evaluated for realism in modeled historical AR behavior and contribution of the resulting daily precipitation to annual total precipitation over Western North America. The five most realistic models display consistent changes in future AR behavior, constraining the spread of the full ensemble. They, moreover, project increasing year-to-year variability of total annual precipitation, particularly over California, where change in total annual precipitation is not projected with confidence. Focusing on three representative river basins along the West Coast, we show that, while the decrease in precipitation frequency is mostly due to non-AR events, the increase in heavy and extreme precipitation is almost entirely due to ARs. This research demonstrates that examining meteorological causes of precipitation regime change can lead to better and more nuanced understanding of climate projections. It highlights the critical role of future changes in ARs to Western water resources, especially over California.

3.
Sci Rep ; 7(1): 10783, 2017 09 07.
Article in English | MEDLINE | ID: mdl-28883636

ABSTRACT

In most Mediterranean climate (MedClim) regions around the world, global climate models (GCMs) consistently project drier futures. In California, however, projections of changes in annual precipitation are inconsistent. Analysis of daily precipitation in 30 GCMs reveals patterns in projected hydrometeorology over each of the five MedClm regions globally and helps disentangle their causes. MedClim regions, except California, are expected to dry via decreased frequency of winter precipitation. Frequencies of extreme precipitation, however, are projected to increase over the two MedClim regions of the Northern Hemisphere where projected warming is strongest. The increase in heavy and extreme precipitation is particularly robust over California, where it is only partially offset by projected decreases in low-medium intensity precipitation. Over the Mediterranean Basin, however, losses from decreasing frequency of low-medium-intensity precipitation are projected to dominate gains from intensifying projected extreme precipitation. MedClim regions are projected to become more sub-tropical, i.e. made dryer via pole-ward expanding subtropical subsidence. California's more nuanced hydrological future reflects a precarious balance between the expanding subtropical high from the south and the south-eastward extending Aleutian low from the north-west. These dynamical mechanisms and thermodynamic moistening of the warming atmosphere result in increased horizontal water vapor transport, bolstering extreme precipitation events.

4.
Sci Rep ; 4: 4364, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24621567

ABSTRACT

Future changes in the number of dry days per year can either reinforce or counteract projected increases in daily precipitation intensity as the climate warms. We analyze climate model projected changes in the number of dry days using 28 coupled global climate models from the Coupled Model Intercomparison Project, version 5 (CMIP5). We find that the Mediterranean Sea region, parts of Central and South America, and western Indonesia could experience up to 30 more dry days per year by the end of this century. We illustrate how changes in the number of dry days and the precipitation intensity on precipitating days combine to produce changes in annual precipitation, and show that over much of the subtropics the change in number of dry days dominates the annual changes in precipitation and accounts for a large part of the change in interannual precipitation variability.


Subject(s)
Climate Change , Climate , Ecological Parameter Monitoring , Rain , Ecosystem , Greenhouse Effect , Models, Theoretical , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...