Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38676154

ABSTRACT

In the evolving landscape of Industry 4.0, the integration of advanced wireless technologies into manufacturing processes holds the promise of unprecedented connectivity and efficiency. In particular, the data transmission in a heavy industry environment needs stable connectivity with mobile operators. This paper deals with the performance study of 4G and 5G mobile signal coverage within a complex factory environment. For this purpose, a cost-effective and portable measurement setup was realized and used to provide long-term measurement campaigns monitoring and recording several key parameter indicators (KPIs) in 4G/5G downlink and upload. To support the reproducibility of the provided study and other research activities, the measured dataset is publicly available for download. Among others findings, the obtained results show how the performance of 4G/5G is influenced by a heavy industry environment and of the time of day on the network load.

2.
Sensors (Basel) ; 23(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37050658

ABSTRACT

This paper describes a design process for a universal development kit based on an analog computer concept that can model the dynamics of an arbitrarily complex dynamical system up to the fourth order. The constructed development kit contains digital blocks and associated analog-to-digital and digital-to-analog converters (ADCs and DAC), such that multiple-segmented piecewise-linear input-output characteristics can be used for the synthesis of the prescribed mathematical model. Polynomial input-output curves can be implemented easily by four-quadrant analog multipliers. The proposed kit was verified through several experimental scenarios, starting with simple sinusoidal oscillators and ending with generators of continuous-time robust chaotic attractors. The description of each individual part of the development kit is accompanied by links to technical documentation, allowing skilled readers in the construction of electronic systems to replicate the proposed functional example. For this purpose, the electrical scheme of the hybrid analog computer and all important source codes are available online.

3.
J Adv Res ; 41: 49-62, 2022 11.
Article in English | MEDLINE | ID: mdl-36328753

ABSTRACT

INTRODUCTION: Infra-red (IR) and visible light (VL) based systems developed for transmission of information about physical quantities (e.g. humidity, temperature) out from closed areas, cannot be effectively employed in case of specific conditions in a targeted environment (because of fog or vapor for example). OBJECTIVES: In this work, we introduce a concept of wireless short-range transmitter and receiver to sense physical quantities, for instance temperature, with slow variation. The proposed concept is able to transmit analog-based information from isolated environments (e.g. aquariums or environments for plant growing) with high immunity against vapor and fog that limits standard optical (laser, IR band) methods of communication. METHODS: In this work, a new concept of short range radiofrequency (RF) communication device consisting of transmitting and receiving parts build from active devices fabricated in 0.35 µm I3T25 3.3 VCMOS process and ferrite antennas is selected. RF part uses medium-wave propagation within 10 mm distance at frequency 700 kHz. Such an approach offers minimal path loss of the radiated energy of a signal and low-gain amplification required for restoration of similar levels as available at the transmitting side. RESULTS: The processing of base-band signals of simple (sine wave) and complex (electrocardiogram) character was verified experimentally through the system. Application example of temperature monitoring in a closed environment, based on a temperature sensor (thermistor), verifies operationability in temperature range from 10 °C up to 50 °C. CONCLUSION: Compared to state-of-the-art solution, the presented concept has several advantages, for instance: less complexity; using of simpler type of modulation and demodulation; lower power consumption and significantly reduced issues caused by an environment with special transmission conditions (e.g. fog and vapor). The obtained results are in good agreement with expectations. Among others, the presented system brings beneficial performances for similar applications targeting on monitoring of low-frequency or slowly varying signals.


Subject(s)
Electrocardiography , Radio Waves , Temperature , Equipment Design , Humidity
4.
Sensors (Basel) ; 22(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36236471

ABSTRACT

This work presents a novel methodology to adjust the inductance of real coils (electronically) and to cancel out serial losses (up to tens or even hundreds of Ohms in practice) electronically. This is important in various fields of electromagnetic sensors (inductive sensors), energy harvesting, measurement and especially in the instrumentation of various devices. State-of-the-art methods do not solve the problem of cancellation of real serial resistance, which is the most important parasitic feature in low- and middle-frequency bands. In this case, the employment of serial negative resistance is not possible due to stability issues. To solve this issue, two solutions allowing the cancellation of serial resistance by the value of the passive element and an electronically adjustable parameter are introduced. The operational ranges are between 0.1 and 1 mH and 0.1 and 10 mH, valid in bandwidths from hundreds of Hz up to hundreds of kHz. The proposed concepts are experimentally tested in two applications: an electronically tunable oscillator of LC type and an electronically tunable band-pass RLC filter. The presented methodology offers significant improvements in the process of circuit design employing inductors and can be beneficially used for on-chip design, where serial resistance issues can be very significant.

5.
Sci Rep ; 11(1): 21826, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34750380

ABSTRACT

An economic concept of acoustic shock wave sensing readout system for simple computer processing is introduced in this work. Its application can be found in precise initialization of the stopwatch from the starter sound, handclap or gun in competitive sport races but also in many other places. The proposed device consists of several low-cost commercially available components and it is powered by a 9 V battery. The proposed device reliably reacts on incoming acoustic shock wave by generation of explicit impulse having controllable duration. It significantly overcomes basic implementations using only a microphone and amplifier (generating parasitic burst instead of defined and distinct impulse) or systems allowing a limited number of adjustable features (gain and/or threshold of the comparator-our concept offers the adjustment of gain, cut-off frequency, threshold level and time duration of active state). In comparison with standard methods, the proposed approach simplifies and makes sensing device less expensive and universal for any powder-based starting gun (without necessity to adapt starting gun). The proposed device, among others, has the following features: impulse duration can be controlled from hundreds of µs up to 2.3 s, the gain range of linear part of processing from 6 to 40 dB and open-collector output compatible with 5 V TTL or 3.3 V CMOS logic. The initialization has been tested in the range from tens of centimeters up to four meters. In order to highlight the important spectral components, the spectral character of the signal can be optimally reduced by a low-pass filter. The quiescent power consumption of the designed simple analog circuit reaches 90 mW. Several use cases, response of the designed system on gunshot signature, talking, hand-clapping and hit on the sensing microphone, are studied and compared to each other. Simulation and experimental results confirm functionality of the realized system.

6.
Sensors (Basel) ; 21(13)2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34283125

ABSTRACT

The fingerprinting technique is a popular approach to reveal location of persons, instruments or devices in an indoor environment. Typically based on signal strength measurement, a power level map is created first in the learning phase to align with measured values in the inference. Second, the location is determined by taking the point for which the recorded received power level is closest to the power level actually measured. The biggest limit of this technique is the reliability of power measurements, which may lack accuracy in many wireless systems. To this end, this work extends the power level measurement by using multiple anchors and multiple radio channels and, consequently, considers different approaches to aligning the actual measurements with the recorded values. The dataset is available online. This article focuses on the very popular radio technology Bluetooth Low Energy to explore the possible improvement of the system accuracy through different machine learning approaches. It shows how the accuracy-complexity trade-off influences the possible candidate algorithms on an example of three-channel Bluetooth received signal strength based fingerprinting in a one dimensional environment with four static anchors and in a two dimensional environment with the same set of anchors. We provide a literature survey to identify the machine learning algorithms applied in the literature to show that the studies available can not be compared directly. Then, we implement and analyze the performance of four most popular supervised learning techniques, namely k Nearest Neighbors, Support Vector Machines, Random Forest, and Artificial Neural Network. In our scenario, the most promising machine learning technique being the Random Forest with classification accuracy over 99%.


Subject(s)
Machine Learning , Neural Networks, Computer , Algorithms , Reproducibility of Results , Support Vector Machine
7.
Sensors (Basel) ; 20(4)2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32098257

ABSTRACT

This paper presents a compact and simple design of adjustable triangular and square wave functional generators employing fundamental cells fabricated on a single integrated circuit (IC) package. Two solutions have electronically tunable repeating frequency. The linear adjustability of repeating frequency was verified in the range between 17 and 264 kHz. The main benefits of the proposed generator are the follows: A simple adjustment of the repeating frequency by DC bias current, Schmitt trigger (threshold voltages) setting by DC driving voltage, and output levels in hundreds of mV when the complementary metal-oxide semiconductor (CMOS) process with limited supply voltage levels is used. These generators are suitable to provide a simple conversion of illuminance to frequency of oscillation that can be employed for illuminance measurement and sensing in the agriculture applications. Experimental measurements proved that the proposed concept is usable for sensing of illuminance in the range from 1 up to 500 lx. The change of illuminance within this range causes driving of bias current between 21 and 52 µA that adjusts repeating frequency between 70 and 154 kHz with an error up to 10% between the expected and real cases.

8.
Sensors (Basel) ; 18(12)2018 Dec 18.
Article in English | MEDLINE | ID: mdl-30567398

ABSTRACT

This paper presents a simple relaxation generator, suitable for a sensor interface, operating as a transducer of capacitance to frequency/period. The proposed circuit employs a current feedback operational amplifier, fabricated in I3T25 0.35 µ m ON Semiconductor CMOS process, and four passive elements including a grounded capacitor (the sensed parameter). It offers a low-impedance voltage output of the generated square wave. Additional frequency to DC voltage converter offers output information in the form of voltage. The experimental capacitance variation from 6.8 nF to 100 nF yields voltage change in the range from 21 mV to 106 mV with error below 5% and sensitivity 0.912 mV/nF evaluated over the full range of change. These values are in good agreement with simulation results obtained from the Mathcad model of frequency to DC voltage transducer passive circuit.

9.
Environ Geochem Health ; 40(5): 1699-1712, 2018 Oct.
Article in English | MEDLINE | ID: mdl-27629409

ABSTRACT

The laterite Ni ore smelting operations in Niquelândia and Barro Alto (Goiás State, Brazil) have produced large amounts of fine-grained smelting wastes, which have been stockpiled on dumps and in settling ponds. We investigated granulated slag dusts (n = 5) and fly ash samples (n = 4) with a special focus on their leaching behaviour in deionised water and on the in vitro bioaccessibility in a simulated gastric fluid, to assess the potential exposure risk for humans. Bulk chemical analyses indicated that both wastes contained significant amounts of contaminants: up to 2.6 wt% Ni, 7580 mg/kg Cr, and 508 mg/kg Co. In only one fly ash sample, after 24 h of leaching in deionised water, the concentrations of leached Ni exceeded the limit for hazardous waste according to EU legislation, whereas the other dusts were classified as inert wastes. Bioaccessible fractions (BAF) of the major contaminants (Ni, Co, and Cr) were quite low for the slag dusts and accounted for less than 2 % of total concentrations. In contrast, BAF values were significantly higher for fly ash materials, which reached 13 % for Ni and 19 % for Co. Daily intakes via oral exposure, calculated for an adult (70 kg, dust ingestion rate of 50 mg/day), exceeded neither the tolerable daily intake (TDI) nor the background exposure limits for all of the studied contaminants. Only if a higher ingestion rate is assumed (e.g. 100 mg dust per day for workers in the smelter), the TDI limit for Ni recently defined by European Food Safety Authority (196 µg/day) was exceeded (324 µg/day) for one fly ash sample. Our data indicate that there is only a limited risk to human health related to the ingestion of dust materials generated by laterite Ni ore smelting operations if appropriate safety measures are adopted at the waste disposal sites and within the smelter facility.


Subject(s)
Coal Ash/analysis , Dust/analysis , Environmental Exposure , Hazardous Waste/analysis , Inorganic Chemicals/administration & dosage , Metallurgy , Nickel/analysis , Administration, Oral , Brazil , Chromium/analysis , Cobalt/analysis , Gastric Juice , Humans , Industrial Waste , Models, Biological , Refuse Disposal/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...