Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Blood Adv ; 8(1): 80-92, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38029365

ABSTRACT

ABSTRACT: GATA binding protein 2 (GATA2) is a conserved zinc finger transcription factor that regulates the emergence and maintenance of complex genetic programs driving development and function of hematopoietic stem and progenitor cells (HSPCs). Patients born with monoallelic GATA2 mutations develop myelodysplastic neoplasm (MDS) and acute myeloid leukemia (AML), whereas acquired GATA2 mutations are reported in 3% to 5% of sporadic AML cases. The mechanisms by which aberrant GATA2 activity promotes MDS and AML are incompletely understood. Efforts to understand GATA2 in basic biology and disease will be facilitated by the development of broadly efficacious antibodies recognizing physiologic levels of GATA2 in diverse tissue types and assays. Here, we purified a polyclonal anti-GATA2 antibody and generated multiple highly specific anti-GATA2 monoclonal antibodies, optimized them for immunohistochemistry on patient bone marrow bioosy samples, and analyzed GATA2 expression in adults with healthy bone marrow, MDS, and acute leukemia. In healthy bone marrow, GATA2 was detected in mast cells, subsets of CD34+ HSPCs, E-cadherin-positive erythroid progenitors, and megakaryocytes. In MDS, GATA2 expression correlates with bone marrow blast percentage, positively correlates with myeloid dysplasia and complex cytogenetics, and is a nonindependent negative predictor of overall survival. In acute leukemia, the percent of GATA2+ blasts closely associates with myeloid lineage, whereas a subset of lymphoblastic and undifferentiated leukemias with myeloid features also express GATA2. However, the percent of GATA2+ blasts in AML is highly variable. Elevated GATA2 expression in AML blasts correlates with peripheral neutropenia and complex AML cytogenetics but, unlike in MDS, does not predict survival.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Adult , Humans , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , Bone Marrow/metabolism , Acute Disease , Cytogenetic Analysis
2.
Am J Pathol ; 192(3): 518-535, 2022 03.
Article in English | MEDLINE | ID: mdl-34954210

ABSTRACT

Acetaminophen (APAP)-induced liver injury is influenced by inflammatory Gram-negative bacterial endotoxin [lipopolysaccharide (LPS)], mechanisms of which are not completely understood. Because LPS-stimulated perisinusoidal hepatic stellate cells (HSCs) produce cytokines that affect survival of hepatocytes, this study investigated their role in APAP-induced liver injury. Fed (nonstarved) rats were administered 5 mg/kg LPS or phosphate-buffered saline (PBS) vehicle, followed by 200 mg/kg APAP or PBS an hour later, and euthanized at 6 hours. Control rats received PBS at both time points. Both LPS and APAP caused mild hepatocyte injury (apoptosis), as assessed by histopathology, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining, and caspase-3 activation. The liver injury was augmented in rats administered LPS + APAP, in association with increased nuclear translocation of interferon-regulatory factor-1 (IRF1). In vitro, APAP augmented LPS/HSC-conditioned medium-induced inhibition of DNA and protein synthesis, apoptosis, and nuclear IRF1 in hepatocytes. LPS-stimulated HSCs produced interferon-ß (IFN-ß), and LPS/HSC + APAP-induced hepatocyte apoptosis was inhibited by anti-IFN-ß antibody. Finally, HSC-depleted mice produced significantly lower IFN-ß and tumor necrosis factor-α, exhibited less oxidative stress, and were protected from excessive injury due to high APAP dose (600 mg/kg), as well as LPS (5 mg/kg overnight) followed by APAP. In co-culture with or without LPS, HSCs increased expression of proinflammatory cytokines by Kupffer cells. These results suggest that HSCs play a critical role in APAP-induced liver injury without or with LPS preconditioning, and it involves INF-ß-IRF1 signaling.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Acetaminophen/metabolism , Acetaminophen/toxicity , Animals , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Cytokines/metabolism , Endotoxins/metabolism , Endotoxins/toxicity , Hepatic Stellate Cells/metabolism , Hepatocytes/metabolism , Lipopolysaccharides/toxicity , Liver/metabolism , Mice , Mice, Inbred C57BL , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...