Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(6): e0199350, 2018.
Article in English | MEDLINE | ID: mdl-29928061

ABSTRACT

Nod-like receptors (NLRs) are important innate pattern recognition receptors and regulators of inflammation or play a role during development. We systematically analysed 41 non-synonymous single nucleotide polymorphisms (SNPs) in 21 NLR genes in a Czech discovery cohort of sporadic colorectal cancer (CRC) (1237 cases, 787 controls) for their association with CRC risk and survival. Five SNPs were found to be associated with CRC risk and eight with survival at 5% significance level. In a replication analysis using data of two large genome-wide association studies (GWASs) from Germany (DACHS: 1798 cases and 1810 controls) and Scotland (2210 cases and 9350 controls) the associations found in the Czech discovery set were not confirmed. However, expression analysis in human gut-related tissues and immune cells revealed that the NLRs associated with CRC risk or survival in the discovery set were expressed in primary human colon or rectum cells, CRC tissue and/or cell lines, providing preliminary evidence for a potential involvement of NLRs in general in CRC development and/or progression. Most interesting was the finding that the enigmatic development-related NLRP5 (also known as MATER) was not expressed in normal colon tissue but in colon cancer tissue and cell lines. Future studies may show whether regulatory variants instead of coding variants might affect the expression of NLRs and contribute to CRC risk and survival.


Subject(s)
Colorectal Neoplasms/genetics , Genetic Association Studies , Genetic Variation , NLR Proteins/genetics , Open Reading Frames/genetics , Aged , Case-Control Studies , Czech Republic , Female , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Hematopoiesis/genetics , Humans , Male , Polymorphism, Single Nucleotide/genetics , Risk Factors , Survival Analysis
2.
Mol Biol Rep ; 40(10): 5921-9, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24065530

ABSTRACT

Altered expression and methylation pattern of tumor suppressor and DNA repair genes, in particular involved in mismatch repair (MMR) pathway, frequently occur in primary colorectal (CRC) tumors. However, little is known about (epi)genetic changes of these genes in precancerous and early stages of CRC. The aim of this pilot study was to analyze expression profile and promoter methylation status of important tumor suppressor and DNA repair genes in the early stages of experimentally induced colorectal carcinogenesis. Rats were treated with azoxymethane (AOM), dextran sodium sulphate (DSS) or with their combination, and sacrificed 1 or 4 months post-treatment period. The down-regulation of Apc expression in left colon, detectable in animals treated with DSS-AOM and sacrificed 1 month after the end of treatment, represents most early marker of the experimental colorectal carcinogenesis. Significantly reduced gene expressions were also found in 5 out of 7 studied MMR genes (Mlh1, Mlh3, Msh3 Pms1, Pms2), regarding the sequential administration of DSS-AOM at 4 months since the treatment. Strong down-regulation was also discovered for Apc, Apex1, Mgmt and TP53. Tumors developed in rectum-sigmoid region displayed significantly lower Apc and Pms2 expressions. The decreased expression of studied genes was not in any case associated with aberrant methylation of promoter region. Present data suggest that down-regulation of Apc and MMR genes are prerequisite for the development of CRC. In this study we addressed for the first time early functional alterations of tumor suppressor genes with underlying epigenetic mechanisms in experimentally induced CRC in rats.


Subject(s)
Colonic Neoplasms/genetics , DNA Methylation/genetics , Gene Expression Regulation, Neoplastic , Tumor Suppressor Proteins/genetics , Animals , Colon/metabolism , Colon/pathology , Male , Pilot Projects , Polymerase Chain Reaction , Rats , Rats, Wistar , Tumor Suppressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...