Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Free Radic Biol Med ; 204: 276-286, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37217089

ABSTRACT

We developed S1QEL1.719, a novel bioavailable S1QEL (suppressor of site IQ electron leak). S1QEL1.719 prevented superoxide/hydrogen peroxide production at site IQ of mitochondrial complex I in vitro. The free concentration giving half-maximal suppression (IC50) was 52 nM. Even at 50-fold higher concentrations S1QEL1.719 did not inhibit superoxide/hydrogen peroxide production from other sites. The IC50 for inhibition of complex I electron flow was 500-fold higher than the IC50 for suppression of superoxide/hydrogen peroxide production from site IQ. S1QEL1.719 was used to test the metabolic effects of suppressing superoxide/hydrogen peroxide production from site IQin vivo. C57BL/6J male mice fed a high-fat chow for one, two or eight weeks had increased body fat, decreased glucose tolerance, and increased fasting insulin concentrations, classic symptoms of metabolic syndrome. Daily prophylactic or therapeutic oral treatment of high-fat-fed animals with S1QEL1.719 decreased fat accumulation, strongly protected against decreased glucose tolerance and prevented or reversed the increase in fasting insulin level. Free exposures in plasma and liver at Cmax were 1-4 fold the IC50 for suppression of superoxide/hydrogen peroxide production at site IQ and substantially below levels that inhibit electron flow through complex I. These results show that the production of superoxide/hydrogen peroxide from mitochondrial site IQin vivo is necessary for the induction and maintenance of glucose intolerance caused by a high-fat diet in mice. They raise the possibility that oral administration of S1QELs may be beneficial in metabolic syndrome.


Subject(s)
Metabolic Syndrome , Superoxides , Mice , Male , Animals , Superoxides/metabolism , Hydrogen Peroxide/metabolism , Peroxides , Insulin , Diet, High-Fat/adverse effects , Mice, Inbred C57BL , Fasting , Adipose Tissue/metabolism , Glucose
2.
J Pharmacol Toxicol Methods ; 111: 107109, 2021.
Article in English | MEDLINE | ID: mdl-34416395

ABSTRACT

INTRODUCTION: A successful integration of automated blood sampling (ABS) into the telemetry instrumented canine cardiovascular model is presented in this study. This combined model provides an efficient means to quickly gain understanding of potential effects on key cardiovascular parameters in dog while providing a complete Pharmacokinetic/Pharmacodynamic (PK/PD) profile for discovery compounds without handling artifacts, reducing the need for a separate pharmacokinetic study. METHODS: Male beagle dogs were chronically implanted with telemetry devices (PhysioTel™ model D70-PCTP) and vascular access ports (SPMID-GRIDAC-5NC). BASi Culex-L automated blood sampling (Bioanalytical Systems, Inc) system was used to collect blood samples at multiple time points. A series of four use cases utilizing four different test compounds and analytical endpoints are described to illustrate some of the potential applications of the technique. RESULTS: In the four presented use cases, automated blood sampling in telemetry instrumented dogs provides simultaneous cardiovascular (heart rate, arterial blood pressure, and left ventricular pressure), electrophysiological assessment (QTc, PR, and QRS intervals), body temperature, and animal activity, while collecting multiple blood samples for drug analysis. CONCLUSION: The combination of automated blood sampling with cardiovascular telemetry monitoring is a novel capability designed to support safety pharmacology cardiovascular assessment of discovery molecules. By combining telemetry and high-fidelity ABS, the model provides an enhanced PK/PD understanding of drug-induced hemodynamic and electrocardiographic effects of discovery compounds in conscious beagles in the same experimental session. Importantly, the model can reduce the need for a separate pharmacokinetic study (positive reduction 3R impact), reduces compound syntheses requirements, and shorten development timelines. Furthermore, implementation of this approach has also improved animal welfare by reducing the animal handling during a study, thereby reducing stress and associated data artifacts (positive refinement 3R impact).


Subject(s)
Cardiovascular System , Telemetry , Animals , Blood Pressure , Dogs , Electrocardiography , Heart Rate , Male
3.
J Pharmacol Toxicol Methods ; 112: 107115, 2021.
Article in English | MEDLINE | ID: mdl-34403748

ABSTRACT

INTRODUCTION: This manuscript presents a successful integration of multi-timepoint biomarker blood sampling (e.g., cytokines) in a conscious dog cardiovascular study using automated blood sampling via vascular access ports in telemetry instrumented dogs. In addition to determining plasma exposure of the test compound, the assessment of biomarkers of interest allows for more comprehensive preclinical evaluation on a traditional conscious dog cardiovascular (CV) telemetry study especially for immunology and immune-oncology molecules. This model system provides a rapid and efficient means to quickly gain understanding of potential effects on key cardiovascular parameters in large species that are commonly used for preclinical safety evaluations while collecting multiple blood samples for drug and cytokine analysis. METHODS: Male beagle dogs were chronically implanted with telemetry devices (PhysioTel™ model D70-PCTP) and vascular access ports (SPMID-GRIDAC-5NC). BASi Culex-L automated blood sampling (ABS) (Bioanalytical Systems, Inc) system was used to collect blood samples at multiple time points for cytokine analysis. Four beagles received low-dose lipopolysaccharide solution (LPS) (0.1 and 0.5 µg/mL). The following cytokines were measured by Milliplex® map Canine Cytokine Magnetic Bead Panel: Interleukin (IL) 2, IL-6, IL-7, IL-8, IL-10, IL-15, IL-18, TNF-α, MCP-1, KC-like, GM-CSF, IFN gamma, and IP10. RESULTS: Low dose LPS administration induced a pronounced dose-dependent, transient release of key inflammatory cytokines (IL-2, IL-6, IL-10, TNF-α, MCP-1, and KC-like). Cytokine responses were similar to other canine and human endotoxin models. LPS administration led to an increase in body temperature, heart rate, and mean arterial pressure, as well as a decrease in QTcV interval. CONCLUSION: Successful incorporation of cytokine analysis in telemetry instrumented dogs with vascular access ports allows for translational PK/PD modeling of both efficacy and safety of compounds in the immunology as well as the immune-oncology therapeutic areas designed to modulate the immune system. Remote collection of blood samples simultaneously with CV endpoints is a significant enhancement for assessment of biomarkers that are sensitive to animal handling and excitement associated with room disturbances which are obligatory with manual blood collection. Furthermore, implementing this approach has also refined our animal welfare procedure by reducing the handling during a study and thereby reducing stress (positive refinement 3R impact).


Subject(s)
Dogs , Immunologic Factors , Telemetry , Animals , Body Temperature , Cardiovascular System , Cytokines , Heart Rate , Immunologic Factors/analysis , Male
4.
J Pharmacol Toxicol Methods ; 109: 107066, 2021.
Article in English | MEDLINE | ID: mdl-33838254

ABSTRACT

INTRODUCTION: A successful integration of automated blood sampling (ABS) into the telemetry instrumented canine cardiovascular model is presented in this study. This combined model provides an efficient means to quickly gain understanding of potential effects on key cardiovascular parameters in dog while providing a complete Pharmacokinetic/Pharmacodynamic (PK/PD) profile for discovery compounds without handling artifacts, reducing the need for a separate pharmacokinetic study. METHODS: Male beagle dogs were chronically implanted with telemetry devices (PhysioTel™ model D70-PCTP) and vascular access ports (SPMID-GRIDAC-5NC). BASi Culex-L automated blood sampling (Bioanalytical Systems, Inc) system was used to collect blood samples at multiple time points. A series of four use cases utilizing four different test compounds and analytical endpoints are described to illustrate some of the potential applications of the technique. RESULTS: In the four presented use cases, automated blood sampling in telemetry instrumented dogs provides simultaneous cardiovascular (heart rate, arterial blood pressure, and left ventricular pressure), electrophysiological assessment (QTc, PR, and QRS intervals), body temperature, and animal activity, while collecting multiple blood samples for drug analysis. CONCLUSION: The combination of automated blood sampling with cardiovascular telemetry monitoring is a novel capability designed to support safety pharmacology cardiovascular assessment of discovery molecules. By combining telemetry and high-fidelity ABS, the model provides an enhanced PK/PD understanding of drug-induced hemodynamic and electrocardiographic effects of discovery compounds in conscious beagles in the same experimental session. Importantly, the model can reduce the need for a separate pharmacokinetic study (positive reduction 3R impact), reduces compound syntheses requirements, and shorten development timelines. Furthermore, implementation of this approach has also improved animal welfare by reducing the animal handling during a study, thereby reducing stress and associated data artifacts (positive refinement 3R impact).


Subject(s)
Cardiovascular System , Telemetry , Animals , Blood Pressure , Dogs , Electrocardiography , Heart Rate , Macaca fascicularis , Male
5.
Comp Med ; 71(2): 133-140, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33814031

ABSTRACT

Successful implementation of automated blood sampling (ABS) into a telemetry instrumented canine cardiovascular model provides simultaneous cardiovascular assessment of novel compounds while collecting multiple blood samples for analysis of drug level, cytokines, and biomarkers. Purpose-bred male Beagle dogs (n = 36) were instrumented with a dual-pressure telemetry transmitter and vascular access port. Modifications to acclimation practices, surgical procedures, and housing were required for implementation of ABS in our established cardiovascular canine telemetry colony. These modifications have increased the use and reproducibility of the model by combining early pharmacokinetic and cardiovascular studies, thus achieving both refinement and reduction from a 3R perspective. In addition, the modified model can shorten timelines and reduce the compound requirement in early stages of drug development. This telemetry-ABS model provides an efficient means to quickly identify potential effects on key cardiovascular parameters in a large animal species and to obtain a more complete pharmacokinetic-pharmacodynamic profile for discovery compounds.


Subject(s)
Models, Cardiovascular , Telemetry , Animals , Blood Pressure , Dogs , Electrocardiography , Heart Rate , Male , Reproducibility of Results
6.
J Pharmacol Toxicol Methods ; 103: 106871, 2020.
Article in English | MEDLINE | ID: mdl-32360993

ABSTRACT

INTRODUCTION: The Comprehensive In Vitro Proarrhythmia Assay (CiPA) initiative differentiates torsadogenic risk of 28 drugs affecting ventricular repolarization based on multiple in vitro human derived ionic currents. However, a standardized prospective assessment of the electrophysiologic effects of these drugs in an integrated in vivo preclinical cardiovascular model is lacking. This study questioned whether QTc interval prolongation in a preclinical in vivo model could detect clinically reported QTc prolongation and assign torsadogenic risk for ten CiPA drugs. METHODS: An acute intravenous administered ascending dose anesthetized dog cardiovascular model was used to assess QTc prolongation along with other electrocardiographic (PR, QRS intervals) and hemodynamic (heart rate, blood pressures, left ventricular contractility) parameters at plasma concentrations spanning and exceeding clinical exposures. hERG current block potency was characterized using IC50 values from automated patch clamp. RESULTS: All eight drugs eliciting clinical QTc prolongation also delayed repolarization in anesthetized dogs at plasma concentrations within four-fold clinical exposures. In vitro QTc safety margins (defined based on clinical Cmax values/plasma concentrations eliciting statistically significant QTc prolongation in dogs) were lower for high vs intermediate torsadogenic risk drugs. In comparison, hERG IC10 values represented as total drug concentrations were better predictors of preclinical QTc prolongation than hERG IC50 values. CONCLUSION: There was good concordance for QTc prolongation in the anesthetized dog model and clinical torsadogenic risk assignment. QTc assessment in the anesthetized dog remains a valuable part of a more comprehensive preclinical integrated risk assessment for delayed repolarization and torsadogenic risk as part of a global cardiovascular evaluation.


Subject(s)
Anti-Arrhythmia Agents/pharmacology , Long QT Syndrome/drug therapy , Torsades de Pointes/drug therapy , Animals , Dogs , Drug Evaluation, Preclinical , Electrocardiography , HEK293 Cells , Heart Rate/drug effects , Humans , Long QT Syndrome/chemically induced , Male , Models, Cardiovascular , Prospective Studies , Risk Assessment , Torsades de Pointes/chemically induced
7.
Article in English | MEDLINE | ID: mdl-29330133

ABSTRACT

INTRODUCTION: The goal of this study was to determine whether assessment of myocardial contractility and hemodynamics in an anesthetized dog model, could consistently detect drug-induced changes in the inotropic state of the heart using drugs known to have clinically relevant positive and negative effects on myocardial contractility. METHODS: Derived parameters included: diastolic, systolic and mean arterial BP, peak systolic LVP, HR, end-diastolic LVP, and LVdP/dtmax as the primary contractility index. RESULTS: These results demonstrate that statistically significant increases (amrinone and pimobendan) and decreases (atenolol and itraconazole) in left ventricular dP/dtmax were observed at clinically relevant exposures. DISCUSSION: The analysis from the current study supports the strategic use of the anesthetized dog model early in the drug Discovery process for a comprehensive cardiovascular evaluation that can include left ventricular dP/dtmax with good translation to human.


Subject(s)
Drug Evaluation, Preclinical/methods , Myocardial Contraction/drug effects , Ventricular Function, Left/drug effects , Adrenergic beta-1 Receptor Antagonists/pharmacology , Anesthesia/methods , Animals , Antifungal Agents/adverse effects , Blood Pressure/drug effects , Cardiotonic Agents/pharmacology , Depression, Chemical , Dogs , Electrocardiography , Heart Ventricles/drug effects , Hypnotics and Sedatives/administration & dosage , Male , Models, Animal , Myocardial Contraction/physiology , Pentobarbital/administration & dosage , Ventricular Function, Left/physiology
8.
Article in English | MEDLINE | ID: mdl-26778372

ABSTRACT

Comprehensive cardiovascular assessment in conscious rodents by utilizing telemetry has been limited by the restriction of current devices to one pressure channel. The purpose of this study was to test and validate a dual pressure transmitter that allows the simultaneous measurement of arterial pressure (AP) and left ventricular pressure (LVP) in conscious freely moving rats. Six rats were surgically implanted with dual pressure transmitters. Baseline hemodynamics and circadian rhythm were observed to return within 7days. AP, heart rate (HR), LVP and indices of left ventricular contractility were stable and demonstrated a prominent circadian rhythm over a two-week period of uninterrupted recordings. Administration of the vasodilator nifedipine produced the anticipated dose-dependent decrease in AP which was accompanied by a baroreflex mediated increase in HR and cardiac contractility. The negative inotrope verapamil produced the expected dose-dependent decreases in AP and cardiac contractility. Finally, a terminal validation of the dual pressure transmitter was performed under anesthesia by measuring AP and LVP simultaneously via telemetry and from a fluid filled arterial catheter and an intraventricular Millar catheter, respectively. A range of pressures and cardiac contractility were studied by administering sequential intravenous infusions of the positive inotrope dobutamine followed by verapamil. Linear regression analysis revealed a high level of agreement between pressures measured by the dual pressure transmitter and the exteriorized catheters. Histopathologic analysis of the heart revealed mild peri-catheter fibrosis. In conclusion, the simultaneous measurement of AP and LVP offers the potential for more detailed cardiovascular assessment in conscious rats.


Subject(s)
Arterial Pressure/physiology , Consciousness/physiology , Heart Ventricles/physiopathology , Ventricular Function, Left/physiology , Ventricular Pressure/physiology , Animals , Consciousness/drug effects , Dobutamine/pharmacology , Heart Rate/drug effects , Heart Rate/physiology , Heart Ventricles/drug effects , Hemodynamics/drug effects , Hemodynamics/physiology , Male , Models, Animal , Myocardial Contraction/drug effects , Myocardial Contraction/physiology , Nifedipine/pharmacology , Rats , Rats, Sprague-Dawley , Telemetry/methods , Vasodilator Agents/pharmacology , Ventricular Function, Left/drug effects , Ventricular Pressure/drug effects , Verapamil/pharmacology
9.
J Med Chem ; 57(17): 7412-24, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-25100568

ABSTRACT

The synthesis and characterization of a series of selective, orally bioavailable 1-(chroman-4-yl)urea TRPV1 antagonists is described. Whereas first-generation antagonists that inhibit all modes of TRPV1 activation can elicit hyperthermia, the compounds disclosed herein do not elevate core body temperature in preclinical models and only partially block acid activation of TRPV1. Advancing the SAR of this series led to the eventual identification of (R)-1-(7-chloro-2,2-bis(fluoromethyl)chroman-4-yl)-3-(3-methylisoquinolin-5-yl)urea (A-1165442, 52), an analogue that possesses excellent pharmacological selectivity, has a favorable pharmacokinetic profile, and demonstrates good efficacy against osteoarthritis pain in rodents.


Subject(s)
Analgesics/chemistry , Body Temperature/drug effects , TRPV Cation Channels/antagonists & inhibitors , Urea/chemistry , Analgesics/pharmacokinetics , Analgesics/pharmacology , Animals , Area Under Curve , Body Temperature/physiology , Dogs , Dose-Response Relationship, Drug , Drug Discovery , HEK293 Cells , Humans , Isoquinolines/chemistry , Isoquinolines/pharmacokinetics , Isoquinolines/pharmacology , Metabolic Clearance Rate , Models, Chemical , Molecular Structure , Rats , Structure-Activity Relationship , TRPV Cation Channels/chemistry , TRPV Cation Channels/metabolism , Urea/analogs & derivatives , Urea/pharmacokinetics , Urea/pharmacology
10.
J Pharmacol Exp Ther ; 343(1): 233-45, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22815533

ABSTRACT

Blockade of the histamine H(3) receptor (H(3)R) enhances central neurotransmitter release, making it an attractive target for the treatment of cognitive disorders. Here, we present in vitro and in vivo pharmacological profiles for the H(3)R antagonist 2-[4'-((3aR,6aR)-5-methyl-hexahydro-pyrrolo[3,4-b]pyrrol-1-yl)-biphenyl-4-yl]-2H-pyridazin-3-one (ABT-288). ABT-288 is a competitive antagonist with high affinity and selectivity for human and rat H(3)Rs (K(i) = 1.9 and 8.2 nM, respectively) that enhances the release of acetylcholine and dopamine in rat prefrontal cortex. In rat behavioral tests, ABT-288 improved acquisition of a five-trial inhibitory avoidance test in rat pups (0.001-0.03 mg/kg), social recognition memory in adult rats (0.03-0.1 mg/kg), and spatial learning and reference memory in a rat water maze test (0.1-1.0 mg/kg). ABT-288 attenuated methamphetamine-induced hyperactivity in mice. In vivo rat brain H(3)R occupancy of ABT-288 was assessed in relation to rodent doses and exposure levels in behavioral tests. ABT-288 demonstrated a number of other favorable attributes, including good pharmacokinetics and oral bioavailability of 37 to 66%, with a wide central nervous system and cardiovascular safety margin. Thus, ABT-288 is a selective H(3)R antagonist with broad procognitive efficacy in rodents and excellent drug-like properties that support its advancement to the clinical area.


Subject(s)
Cognition/drug effects , Cognition/physiology , Histamine H3 Antagonists/pharmacology , Nootropic Agents/pharmacology , Pyridazines/pharmacology , Pyrroles/pharmacology , Receptors, Histamine H3/physiology , Animals , Avoidance Learning/drug effects , Avoidance Learning/physiology , Guinea Pigs , HEK293 Cells , Histamine H3 Antagonists/chemistry , Humans , Male , Mice , Nootropic Agents/chemistry , Protein Binding/physiology , Pyridazines/chemistry , Pyrroles/chemistry , Rats , Rats, Inbred SHR , Rats, Long-Evans , Rats, Sprague-Dawley , Recognition, Psychology/drug effects , Recognition, Psychology/physiology
11.
Bioorg Med Chem Lett ; 22(9): 3208-12, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22465635

ABSTRACT

In an effort to identify multi-targeted kinase inhibitors with a novel spectrum of kinase activity, a screen of Abbott proprietary KDR inhibitors against a broad panel of kinases was conducted and revealed a series of thienopyridine ureas with promising activity against the Aurora kinases. Modification of the diphenyl urea and C7 moiety of these compounds provided potent inhibitors with good pharmacokinetic profiles that were efficacious in mouse tumor models after oral dosing. Compound 2 (ABT-348) of this series is currently undergoing Phase I clinical trials in solid and hematological cancer populations.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Urea/pharmacology , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Humans , Mice , Protein Kinase Inhibitors/chemistry , Vascular Endothelial Growth Factor A
12.
Int J Endocrinol ; 2010: 625852, 2010.
Article in English | MEDLINE | ID: mdl-20169119

ABSTRACT

Endothelial dysfunction increases cardiovascular disease risk in chronic kidney disease (CKD). This study investigates whether VDR activation affects endothelial function in CKD. The 5/6 nephrectomized (NX) rats with experimental chronic renal insufficiency were treated with or without paricalcitol, a VDR activator. Thoracic aortic rings were precontracted with phenylephrine and then treated with acetylcholine or sodium nitroprusside. Uremia significantly affected aortic relaxation (-50.0 +/- 7.4% in NX rats versus -96.2 +/- 5.3% in SHAM at 30 muM acetylcholine). The endothelial-dependent relaxation was improved to -58.2 +/- 6.0%, -77.5 +/- 7.3%, and -90.5 +/- 4.0% in NX rats treated with paricalcitol at 0.021, 0.042, and 0.083 mug/kg for two weeks, respectively, while paricalcitol at 0.042 mug/kg did not affect blood pressure and heart rate. Parathyroid hormone (PTH) suppression alone did not improve endothelial function since cinacalcet suppressed PTH without affecting endothelial-dependent vasorelaxation. N-omega-nitro-L-arginine methyl ester completely abolished the effect of paricalcitol on improving endothelial function. These results demonstrate that VDR activation improves endothelial function in CKD.

13.
Clin Exp Pharmacol Physiol ; 37(5-6): 636-40, 2010 May.
Article in English | MEDLINE | ID: mdl-20132238

ABSTRACT

1. It has been shown that tubulin-binding agents can destabilize cellular microtubules and suppress tumour growth; but it has also become apparent that some compounds can exert anti-vascular effects within the neovasculature of a solid tumour. To date, the difficulty with these targets has been the ability to selectivity induce vascular damage to the tumour while leaving normal vasculature unaffected. The data presented here characterizes the in vivo, tumour selective, anti-vascular effects of the novel tubulin-binding agent A-318315. 2. To that purpose, we have used an anaesthetized in vivo rat model designed to quantify acute changes in regional vascular resistance (VR) in both tumour and non-tumour vascular beds, simultaneously. Tissue-isolated tumours (approximately 1.25 gm) with blood flow supplied by a single epigastric artery were grown in the hindlimb of adult male rats. Blood flow to the tumour, mesenteric, renal and normal (non-tumour epigastric) arteries was measured pre-dose and post-dose under anaesthesia. 3. A-318315 was tested at 3, 10 and 30 mg/kg, i.v. These doses produced modest, transient increases in mean arterial pressure with little to no effect on heart rate. At peak effect, tumour VR increased to 175 +/- 47, 337 +/- 77 and 751 +/- 151% above the baseline, for the 3, 10 and 30 mg/kg doses, respectively, whereas VR was only modestly and transiently increased in normal epigastric (88 +/- 19%), mesenteric (33 +/- 3.3%) and renal arteries (17 +/- 8.6%). 4. These data demonstrate that A-318315 produces marked reductions in tumour blood flow in the rat at doses that exert minor effects on normal vascular function.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Antimitotic Agents/therapeutic use , Hemodynamics/drug effects , Indoles/therapeutic use , Neovascularization, Pathologic/drug therapy , Sulfonamides/therapeutic use , Angiogenesis Inhibitors/adverse effects , Angiogenesis Inhibitors/pharmacokinetics , Angiogenesis Inhibitors/pharmacology , Animals , Antimitotic Agents/adverse effects , Antimitotic Agents/pharmacokinetics , Antimitotic Agents/pharmacology , Blood Pressure/drug effects , Cell Line, Tumor , Dose-Response Relationship, Drug , Heart Rate/drug effects , Indoles/adverse effects , Indoles/pharmacokinetics , Indoles/pharmacology , Male , Molecular Structure , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/physiopathology , Rats , Rats, Inbred F344 , Sulfonamides/adverse effects , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology , Tubulin/metabolism , Vascular Resistance/drug effects
14.
J Cardiovasc Pharmacol ; 54(6): 543-51, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19770671

ABSTRACT

Torcetrapib is a cholesteryl ester transfer protein inhibitor with an undesired response of increasing arterial pressure in humans. Pressor responses to torcetrapib have been demonstrated in multiple preclinical species. However, these studies have not related plasma concentrations to observed effects. Our purpose was to 1) characterize the cardiovascular responses of torcetrapib in conscious and anesthetized dogs with measured plasma concentrations; and 2) characterize the hemodynamic effects contributing to hypertension using comprehensively instrumented anesthetized dogs. Torcetrapib was dosed orally (3, 30 mg/kg) and intravenously (0.01, 0.33, 0.1 mg/kg) in conscious and anesthetized dogs, respectively. Mean arterial pressure and heart rate were monitored in both models; additional parameters were measured in anesthetized dogs. Plasma drug concentrations were assessed in both models. In conscious and anesthetized dogs, torcetrapib increased mean arterial pressure 25 and 18 mm Hg and heart rate 35 and 21 beats/min, at 2.94 and 3.99 microg/mL, respectively. In anesthetized dogs, torcetrapib increased pulmonary arterial pressure, both systemic and pulmonary hypertension driven by increases in vascular resistance. The compound increased rate pressure product and myocardial contractility while decreasing time to systolic pressure recovery and ejection time. Thus, torcetrapib-induced pressor responses are mediated by systemic and pulmonary vasoconstriction and are associated with increased myocardial oxygen consumption and positive inotropy.


Subject(s)
Anesthesia , Cardiovascular System/drug effects , Hemodynamics/drug effects , Pentobarbital/administration & dosage , Quinolines/pharmacology , Animals , Blood Pressure/drug effects , Blood Pressure/physiology , Cardiac Output/drug effects , Cardiac Output/physiology , Cholesterol Ester Transfer Proteins/antagonists & inhibitors , Dogs , Electrocardiography , Heart Rate/drug effects , Heart Rate/physiology , Hemodynamics/physiology , Male , Myocardial Contraction/drug effects , Myocardial Contraction/physiology , Quinolines/administration & dosage , Quinolines/blood , Quinolines/pharmacokinetics , Telemetry , Vascular Resistance/drug effects , Vascular Resistance/physiology , Ventricular Function, Left/drug effects , Ventricular Function, Left/physiology
15.
Bioorg Med Chem ; 16(18): 8516-25, 2008 Sep 15.
Article in English | MEDLINE | ID: mdl-18722778

ABSTRACT

A series of 1,2,3,6-tetrahydropyridyl-4-carboxamides, exemplified by 6, have been synthesized and evaluated for in vitro TRPV1 antagonist activity, and in vivo analgesic activity in animal pain models. The tetrahydropyridine 6 is a novel TRPV1 receptor antagonist that potently inhibits receptor-mediated Ca2+ influx in vitro induced by several agonists, including capsaicin, N-arachidonoyldopamine (NADA), and low pH. This compound penetrates the CNS and shows potent anti-nociceptive effects in a broad range of animal pain models upon oral dosing due in part to its ability to antagonize both central and peripheral TRPV1 receptors. The SAR leading to the discovery of 6 is presented in this report.


Subject(s)
Analgesics/pharmacology , Pyridines/administration & dosage , TRPV Cation Channels/antagonists & inhibitors , Administration, Oral , Analgesics/chemical synthesis , Animals , Arachidonic Acids/pharmacology , Calcium/metabolism , Capsaicin/pharmacology , Disease Models, Animal , Dopamine/analogs & derivatives , Dopamine/pharmacology , Dose-Response Relationship, Drug , Hydrogen-Ion Concentration , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Hyperalgesia/pathology , Pain Measurement , Pyridines/chemical synthesis , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , TRPV Cation Channels/metabolism
16.
J Pharmacol Exp Ther ; 325(1): 331-40, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18171907

ABSTRACT

Levosimendan enhances cardiac contractility primarily via Ca(2+) sensitization, and it induces vasodilation through the activation of ATP-sensitive potassium channels and large conductance Ca(2+)-activated K(+) channels. However, the concentration-dependent hemodynamic effects of levosimendan and its metabolites (R)-N-(4-(4-methyl-6-oxo-1,4,5,6-tetrahydropyridazin-3-yl)phenyl)acetamide (OR-1896) and (R)-6-(4-aminophenyl)-5-methyl-4,5-dihydropyridazin-3(2H)-one (OR-1855) have not been well defined. Thus, levosimendan (0.03, 0.10, 0.30, and 1.0 mumol/kg/30 min; n = 6) was infused as four escalating 30-min i.v. doses targeting therapeutic to supratherapeutic concentrations of levosimendan (C(max), approximately 62.6 ng/ml); metabolites were infused at one-half log-unit lower doses and responses compared to dobutamine (beta(1)-agonist) and milrinone (phosphodiesterase 3 inhibitor). Peak concentrations of levosimendan, OR-1896, and OR-1855 at the end of the high dose were 323 +/- 14, 83 +/- 2, and 6 +/- 2 ng/ml, respectively (OR-1855 rapidly metabolized to OR-1896; peak = 82 +/- 3 ng/ml). Levosimendan and OR-1896 produced dose-dependent reductions in blood pressure and peripheral resistance with a rank potency, based on ED(15) values, of OR-1896 (0.03 mumol/kg) > OR-1855 > levosimendan > milrinone (0.24 mumol/kg); an ED(15) for dobutamine could not be defined. Only dobutamine produced increases in pulse pressure (30 +/- 5%) and rate-pressure product (34 +/- 4%). All of the compounds, with the exception of OR-1855, elicited dose-dependent increases in dP/dt with a rank potency, based on ED(50) values, of dobutamine (0.03 mumol/kg) > levosimendan > OR-1896 > milrinone (0.09 mumol/kg), although only levosimendan produced sustained increases in cardiac output (9 +/- 4%). Thus, levosimendan and OR-1896 are hemodynamically active at sub- to supratherapeutic concentrations (whereas the effects of OR-1855 in the rat are thought to be predominantly mediated by conversion to OR-1896) and produce direct inotropic effects and also direct relaxation of the peripheral vasculature, which clearly differentiates them from dobutamine, which does not elicit K(+) channel activation, suggesting a more balanced effect on the cardiac-contractile state and K(+) channel-mediated changes in vascular resistance.


Subject(s)
Cardiovascular Physiological Phenomena/drug effects , Dobutamine/pharmacology , Hemodynamics/drug effects , Hydrazones/pharmacology , Milrinone/pharmacology , Pyridazines/pharmacology , Animals , Blood Pressure , Cardiac Output , Cardiotonic Agents , Dobutamine/administration & dosage , Drug Combinations , Heart Rate , Hydrazones/administration & dosage , Male , Milrinone/administration & dosage , Myocardial Contraction , Pyridazines/administration & dosage , Rats , Rats, Sprague-Dawley , Simendan , Vascular Resistance
17.
Am J Physiol Heart Circ Physiol ; 294(1): H238-48, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17982006

ABSTRACT

Levosimendan enhances cardiac contractility via Ca(2+) sensitization and induces vasodilation through the activation of ATP-dependent K(+) and large-conductance Ca(2+)-dependent K(+) channels. However, the hemodynamic effects of levosimendan, as well as its metabolites, OR-1896 and OR-1855, relative to plasma concentrations achieved, are not well defined. Thus levosimendan, OR-1896, OR-1855, or vehicle was infused at 0.01, 0.03, 0.1, and 0.3 mumol.kg(-1).30 min(-1), targeting therapeutic to supratherapeutic concentrations of total levosimendan (62.6 ng/ml). Results were compared with those of the beta(1)-agonist dobutamine and the phosphodiesterase 3 inhibitor milrinone. Peak concentrations of levosimendan, OR-1896, and OR-1855 were 455 +/- 21, 126 +/- 6, and 136 +/- 6 ng/ml, respectively. Levosimendan and OR-1896 produced dose-dependent reductions in mean arterial pressure (-31 +/- 2 and -42 +/- 3 mmHg, respectively) and systemic resistance without affecting pulse pressure, effects paralleled by increases in heart rate; OR-1855 produced no effect at any dose tested. Dobutamine, but not milrinone, increased mean arterial pressure and pulse pressure (17 +/- 2 and 23 +/- 2 mmHg, respectively). Regarding potency to elicit reductions in time to peak pressure and time to systolic pressure recovery: OR-1896 > levosimendan > milrinone > dobutamine. Levosimendan and OR-1896 elicited dose-dependent increases in change in pressure over time (118 +/- 10 and 133 +/- 13%, respectively), concomitant with reductions in left ventricular end-diastolic pressure and ejection time. However, neither levosimendan nor OR-1896 produced increases in myocardial oxygen consumption at inotropic and vasodilatory concentrations, whereas dobutamine increased myocardial oxygen consumption (79% above baseline). Effects of the levosimendan and OR-1896 were limited to the systemic circulation; neither compound produced changes in pulmonary pressure, whereas dobutamine produced profound increases (74 +/- 13%). Thus levosimendan and OR-1896 are hemodynamically active in the anesthetized dog at concentrations observed clinically and elicit cardiovascular effects consistent with activation of both K(+) channels and Ca(2+) sensitization, whereas OR-1855 is inactive on endpoints measured in this study.


Subject(s)
Acetamides/pharmacology , Cardiotonic Agents/pharmacology , Cardiovascular System/drug effects , Dobutamine/pharmacology , Hydrazones/pharmacology , Milrinone/pharmacology , Oxygen Consumption/drug effects , Pyridazines/pharmacology , Vascular Resistance/drug effects , Vasodilator Agents/pharmacology , Animals , Blood Pressure/drug effects , Calcium/metabolism , Cardiac Output/drug effects , Cardiotonic Agents/blood , Cardiovascular System/metabolism , Dogs , Dose-Response Relationship, Drug , Heart Rate/drug effects , Hydrazones/blood , Male , Myocardial Contraction/drug effects , Potassium/metabolism , Potassium Channels/drug effects , Potassium Channels/metabolism , Pulmonary Circulation/drug effects , Pyridazines/blood , Simendan , Time Factors , Vasodilator Agents/blood , Ventricular Function, Left/drug effects
18.
Bioorg Med Chem Lett ; 17(2): 495-500, 2007 Jan 15.
Article in English | MEDLINE | ID: mdl-17055723

ABSTRACT

The hemodynamic effects of a series of potent and selective 4-aminopyridine carboxamide-based pan-JNK inhibitors were assessed in an anesthetized rat model. The effects of these agents on mean arterial pressure, heart rate, cardiac contractility, and peripheral vascular resistance are described, and the implication for targeting protein kinases in metabolic diseases is discussed.


Subject(s)
Blood Pressure/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Heart Rate/drug effects , MAP Kinase Kinase 4/antagonists & inhibitors , Metabolic Diseases/drug therapy , Metabolic Diseases/enzymology , Myocardial Contraction/drug effects , Vascular Resistance/drug effects , Aminopyridines/chemical synthesis , Aminopyridines/pharmacology , Anesthesia , Anesthetics , Animals , Male , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Thiopental/analogs & derivatives , Ventricular Function, Left/drug effects
19.
J Med Chem ; 49(22): 6569-84, 2006 Nov 02.
Article in English | MEDLINE | ID: mdl-17064075

ABSTRACT

Evaluation of multiple structurally distinct series of melanin concentrating hormone receptor 1 antagonists in an anesthetized rat cardiovascualar assay led to the identification of a chromone-2-carboxamide series as having excellent safety against the chosen cardiovascular endpoints at high drug concentrations in the plasma and brain. Optimization of this series led to considerable improvements in affinity, functional potency, and pharmacokinetic profile. This led to the identification of a 7-fluorochromone-2-carboxamide (22) that was orally efficacious in a diet-induced obese mouse model, retained a favorable cardiovascular profile in rat, and demonstrated dramatic improvement in effects on mean arterial pressure in our dog cardiovascular model compared to other series reported by our group. However, this analogue also led to prolongation of the QT interval in the dog that was linked to affinity for hERG channel and unexpectedly potent functional blockade of this ion channel.


Subject(s)
Benzodioxoles/pharmacology , Cardiovascular Diseases/chemically induced , Chromones/pharmacology , Receptors, Somatostatin/antagonists & inhibitors , Acylation , Animals , Area Under Curve , Benzodioxoles/pharmacokinetics , Benzodioxoles/toxicity , Blood Pressure/drug effects , Body Weight/drug effects , Calcium/metabolism , Cell Line , Chromones/pharmacokinetics , Chromones/toxicity , Dogs , Electrocardiography/drug effects , Female , Half-Life , Heart Rate/drug effects , Indicators and Reagents , Mice , Mice, Inbred C57BL , Potassium Channels/drug effects , Potassium Channels/metabolism , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
20.
Bioorg Med Chem ; 14(14): 4740-9, 2006 Jul 15.
Article in English | MEDLINE | ID: mdl-16621571

ABSTRACT

Novel 5,6-fused heteroaromatic ureas were synthesized and evaluated for their activity as TRPV1 antagonists. It was found that 4-aminoindoles and indazoles are the preferential cores for the attachment of ureas. Bulky electron-withdrawing groups in the para-position of the aromatic ring of the urea substituents imparted the best in vitro potency at TRPV1. The most potent derivatives were assessed in in vivo inflammatory and neuropathic pain models. Compound 46, containing the indazole core and a 3,4-dichlorophenyl group appended to it via a urea linker, demonstrated in vivo analgesic activity upon oral administration. This derivative also showed selectivity versus other receptors in the CEREP screen and exhibited acceptable cardiovascular safety at levels exceeding the therapeutic dose.


Subject(s)
TRPV Cation Channels/antagonists & inhibitors , Urea/analogs & derivatives , Animals , In Vitro Techniques , Kinetics , Male , Mice , Motor Activity/drug effects , Pain Measurement , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , TRPV Cation Channels/metabolism , Urea/chemical synthesis , Urea/chemistry , Urea/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...