Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 13: 877813, 2022.
Article in English | MEDLINE | ID: mdl-35620103

ABSTRACT

The pandemic caused by SARS-CoV-2 (SCoV-2) has impacted the world in many ways and the virus continues to evolve and produce novel variants with the ability to cause frequent global outbreaks. Although the advent of the vaccines abated the global burden, they were not effective against all the variants of SCoV-2. This trend warrants shifting the focus on the development of small molecules targeting the crucial proteins of the viral replication machinery as effective therapeutic solutions. The PLpro is a crucial enzyme having multiple roles during the viral life cycle and is a well-established drug target. In this study, we identified 12 potential inhibitors of PLpro through virtual screening of the FDA-approved drug library. Docking and molecular dynamics simulation studies suggested that these molecules bind to the PLpro through multiple interactions. Further, IC50 values obtained from enzyme-inhibition assays affirm the stronger affinities of the identified molecules for the PLpro. Also, we demonstrated high structural conservation in the catalytic site of PLpro between SCoV-2 and Human Coronavirus 229E (HCoV-229E) through molecular modelling studies. Based on these similarities in PLpro structures and the resemblance in various signalling pathways for the two viruses, we propose that HCoV-229E is a suitable surrogate for SCoV-2 in drug-discovery studies. Validating our hypothesis, Mefloquine, which was effective against HCoV-229E, was found to be effective against SCoV-2 as well in cell-based assays. Overall, the present study demonstrated Mefloquine as a potential inhibitor of SCoV-2 PLpro and its antiviral activity against SCoV-2. Corroborating our findings, based on the in vitro virus inhibition assays, a recent study reported a prophylactic role for Mefloquine against SCoV-2. Accordingly, Mefloquine may further be investigated for its potential as a drug candidate for the treatment of COVID.

2.
Biomed Pharmacother ; 145: 112434, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34801853

ABSTRACT

Lipoxygenases (ALOX-isoforms) are lipid peroxidizing enzymes, which have been implicated in cell differentiation and maturation but also in the biosynthesis of lipid mediators playing important roles in the pathogenesis of inflammatory, hyperproliferative and neurological diseases. In mammals these enzymes are widely distributed and the human genome involves six functional genes encoding for six distinct human ALOX paralogs. In mice, there is an orthologous enzyme for each human ALOX paralog but the catalytic properties of human and mouse ALOX orthologs show remarkable differences. ALOX inhibitors are frequently employed for deciphering the biological role of these enzymes in mouse models of human diseases but owing to the functional differences between mouse and human ALOX orthologs the uncritical use of such inhibitors is sometimes misleading. In this study we evaluated the paralog- and ortholog-specificity of 13 frequently employed ALOX-inhibitors against four recombinant human and mouse ALOX paralogs (ALOX15, ALOX15B, ALOX12, ALOX5) under different experimental conditions. Our results indicated that except for zileuton, which exhibits a remarkable paralog-specificity for mouse and human ALOX5, no other inhibitor was strictly paralog specific but some compounds exhibit an interesting ortholog-specificity. Because of the variable isoform specificities of the currently available ALOX inhibitors care must be taken when the biological effects of these compounds observed in complex in vitro and in vivo systems are interpreted.


Subject(s)
Arachidonate 15-Lipoxygenase/drug effects , Lipoxygenase Inhibitors/pharmacology , Animals , Arachidonate 15-Lipoxygenase/genetics , Cell Line , Humans , Isoenzymes , Mice , Sf9 Cells , Species Specificity
3.
PLoS One ; 10(8): e0134472, 2015.
Article in English | MEDLINE | ID: mdl-26305898

ABSTRACT

In this study we introduce a rescoring method to improve the accuracy of docking programs against mPGES-1. The rescoring method developed is a result of extensive computational study in which different scoring functions and molecular descriptors were combined to develop consensus and rescoring methods. 127 mPGES-1 inhibitors were collected from literature and were segregated into training and external test sets. Docking of the 27 training set compounds was carried out using default settings in AutoDock Vina, AutoDock, DOCK6 and GOLD programs. The programs showed low to moderate correlation with the experimental activities. In order to introduce the contributions of desolvation penalty and conformation energy of the inhibitors various molecular descriptors were calculated. Later, rescoring method was developed as empirical sum of normalised values of docking scores, LogP and Nrotb. The results clearly indicated that LogP and Nrotb recuperate the predictions of these docking programs. Further the efficiency of the rescoring method was validated using 100 test set compounds. The accurate prediction of binding affinities for analogues of the same compounds is a major challenge for many of the existing docking programs; in the present study the high correlation obtained for experimental and predicted pIC50 values for the test set compounds validates the efficiency of the scoring method.


Subject(s)
Intramolecular Oxidoreductases/chemistry , Molecular Docking Simulation , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Inhibitory Concentration 50 , Intramolecular Oxidoreductases/antagonists & inhibitors , Prostaglandin-E Synthases , Protein Conformation , Statistics, Nonparametric , Thermodynamics
4.
Prog Lipid Res ; 57: 13-39, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25435097

ABSTRACT

Leukotrienes are pro-inflammatory lipid mediators, which are biosynthesized via the lipoxygenase pathway of the arachidonic acid cascade. Lipoxygenases form a family of lipid peroxidizing enzymes and human lipoxygenase isoforms have been implicated in the pathogenesis of inflammatory, hyperproliferative (cancer) and neurodegenerative diseases. Lipoxygenases are not restricted to humans but also occur in a large number of pro- and eucaryotic organisms. Lipoxygenase-like sequences have been identified in the three domains of life (bacteria, archaea, eucarya) but because of lacking functional data the occurrence of catalytically active lipoxygenases in archaea still remains an open question. Although the physiological and/or pathophysiological functions of various lipoxygenase isoforms have been studied throughout the last three decades there is no unifying concept for the biological importance of these enzymes. In this review we are summarizing the current knowledge on the distribution of lipoxygenases in living single and multicellular organisms with particular emphasis to higher vertebrates and will also focus on the genetic diversity of enzymes and receptors involved in human leukotriene signaling.


Subject(s)
Genetic Variation , Leukotrienes/metabolism , Lipoxygenases/genetics , Lipoxygenases/metabolism , Signal Transduction , Animals , Evolution, Molecular , Humans , Phylogeny , Receptors, Leukotriene/genetics , Receptors, Leukotriene/metabolism , Vertebrates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...