Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 65(9): 6940-6952, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35471939

ABSTRACT

KRAS is an archetypal high-value intractable oncology drug target. The glycine to cysteine mutation at codon 12 represents an Achilles heel that has now rendered this important GTPase druggable. Herein, we report our structure-based drug design approach that led to the identification of 21, AZD4625, a clinical development candidate for the treatment of KRASG12C positive tumors. Highlights include a quinazoline tethering strategy to lock out a bio-relevant binding conformation and an optimization strategy focused on the reduction of extrahepatic clearance mechanisms seen in preclinical species. Crystallographic analysis was also key in helping to rationalize unusual structure-activity relationship in terms of ring size and enantio-preference. AZD4625 is a highly potent and selective inhibitor of KRASG12C with an anticipated low clearance and high oral bioavailability profile in humans.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Antineoplastic Agents/pharmacology , Drug Design , Humans , Lung Neoplasms/drug therapy , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Quinazolines/pharmacology , Structure-Activity Relationship
2.
J Med Chem ; 63(9): 4468-4483, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32023060

ABSTRACT

Attempts to directly drug the important oncogene KRAS have met with limited success despite numerous efforts across industry and academia. The KRASG12C mutant represents an "Achilles heel" and has recently yielded to covalent targeting with small molecules that bind the mutant cysteine and create an allosteric pocket on GDP-bound RAS, locking it in an inactive state. A weak inhibitor at this site was optimized through conformational locking of a piperazine-quinazoline motif and linker modification. Subsequent introduction of a key methyl group to the piperazine resulted in enhancements in potency, permeability, clearance, and reactivity, leading to identification of a potent KRASG12C inhibitor with high selectivity and excellent cross-species pharmacokinetic parameters and in vivo efficacy.


Subject(s)
Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Piperazines/therapeutic use , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Quinazolines/therapeutic use , Quinolones/therapeutic use , Allosteric Regulation , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Caco-2 Cells , Cell Line, Tumor , Drug Design , Humans , Male , Mice, Nude , Molecular Conformation , Mutation , Piperazines/chemical synthesis , Piperazines/pharmacokinetics , Proto-Oncogene Proteins p21(ras)/genetics , Quinazolines/chemical synthesis , Quinazolines/pharmacokinetics , Quinolones/chemical synthesis , Quinolones/pharmacokinetics , Rats, Wistar , Structure-Activity Relationship , Xenograft Model Antitumor Assays
3.
Clin Cancer Res ; 23(24): 7584-7595, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28972046

ABSTRACT

Purpose: PTEN-null tumors become dependent on the PI3Kß isoform and can be targeted by molecules such as the selective PI3Kß inhibitor AZD8186. However, beyond the modulation of the canonical PI3K pathway, the consequences of inhibiting PI3Kß are poorly defined.Experimental Design: To determine the broader impact of AZD8186 in PTEN-null tumors, we performed a genome-wide RNA-seq analysis of PTEN-null triple-negative breast tumor xenografts treated with AZD8186. Mechanistic consequences of AZD8186 treatment were examined across a number of PTEN-null cell lines and tumor models.Results: AZD8186 treatment resulted in modification of transcript and protein biomarkers associated with cell metabolism. We observed downregulation of cholesterol biosynthesis genes and upregulation of markers associated with metabolic stress. Downregulation of cholesterol biosynthesis proteins, such as HMGCS1, occurred in PTEN-null cell lines and tumor xenografts sensitive to AZD8186. Therapeutic inhibition of PI3Kß also upregulated PDHK4 and increased PDH phosphorylation, indicative of reduced carbon flux into the TCA cycle. Consistent with this, metabolomic analysis revealed a number of changes in key carbon pathways, nucleotide, and amino acid biosynthesis.Conclusions: This study identifies novel mechanistic biomarkers of PI3Kß inhibition in PTEN-null tumors supporting the concept that targeting PI3Kß may exploit a metabolic dependency that contributes to therapeutic benefit in inducing cell stress. Considering these additional pathways will guide biomarker and combination strategies for this class of agents. Clin Cancer Res; 23(24); 7584-95. ©2017 AACR.


Subject(s)
Aniline Compounds/administration & dosage , Chromones/administration & dosage , Class II Phosphatidylinositol 3-Kinases/genetics , PTEN Phosphohydrolase/genetics , Triple Negative Breast Neoplasms/drug therapy , Aniline Compounds/adverse effects , Animals , Cell Line, Tumor , Chromones/adverse effects , Female , Gene Expression Regulation, Neoplastic , Humans , Hydroxymethylglutaryl-CoA Synthase/genetics , Metabolic Networks and Pathways/genetics , Mice , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...