Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Vis Sci Technol ; 3(2): 6, 2014 04.
Article in English | MEDLINE | ID: mdl-24749003

ABSTRACT

PURPOSE: Our aim was to determine the effect of a surgical technique on biomaterial implant performance, specifically graft retention. METHODS: Twelve mini pigs were implanted with cell-free, 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS) cross-linked recombinant human collagen type III (RHCIII) hydrogels as substitutes for donor corneal allografts using overlying sutures with or without human amniotic membrane (HAM) versus interrupted sutures with HAM. The effects of the retention method were compared as well as the effects of collagen concentration (13.7% to 15% RHCIII). RESULTS: All implanted corneas showed initial haze that cleared with time, resulting in corneas with optical clarity matching those of untreated controls. Biochemical analysis showed that by 12 months post operation, the initial RHCIII implants had been completely remodeled, as type I collagen, was the major collagenous protein detected, whereas no RHCIII could be detected. Histological analysis showed all implanted corneas exhibited regeneration of epithelial and stromal layers as well as nerves, along with touch sensitivity and tear production. Most neovascularization was seen in corneas stabilized by interrupted sutures. CONCLUSIONS: This showed that the surgical technique used does have a significant effect on the overall performance of corneal implants, overlying sutures caused less vascularization than interrupted sutures. TRANSLATIONAL RELEVANCE: Understanding the significance of the suturing technique can aid the selection of the most appropriate procedure when implanting artificial corneal substitutes. The same degree of regeneration, despite a higher collagen content indicates that future material development can progress toward stronger, more resistant implants.

2.
Biomaterials ; 35(8): 2420-7, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24374070

ABSTRACT

We developed cell-free implants, comprising carbodiimide crosslinked recombinant human collagen (RHC), to enable corneal regeneration by endogenous cell recruitment, to address the worldwide shortage of donor corneas. Patients were grafted with RHC implants. Over four years, the regenerated neo-corneas were stably integrated without rejection, without the long immunosuppression regime needed by donor cornea patients. There was no recruitment of inflammatory dendritic cells into the implant area, whereas, even with immunosuppression, donor cornea recipients showed dendritic cell migration into the central cornea and a rejection episode was observed. Regeneration as evidenced by continued nerve and stromal cell repopulation occurred over the four years to approximate the micro-architecture of healthy corneas. Histopathology of a regenerated, clear cornea from a regrafted patient showed normal corneal architecture. Donor human cornea grafted eyes had abnormally tortuous nerves and stromal cell death was found. Implanted patients had a 4-year average corrected visual acuity of 20/54 and gained more than 5 Snellen lines of vision on an eye chart. The visual acuity can be improved with more robust materials for better shape retention. Nevertheless, these RHC implants can achieve stable regeneration and therefore, represent a potentially safe alternative to donor organ transplantation.


Subject(s)
Biocompatible Materials/therapeutic use , Cornea/surgery , Recombinant Proteins/metabolism , Regeneration/physiology , Tissue Scaffolds/chemistry , Adolescent , Adult , Aged , Aged, 80 and over , Collagen/genetics , Collagen/metabolism , Female , Humans , Male , Microscopy, Confocal , Middle Aged , Prostheses and Implants , Recombinant Proteins/genetics , Visual Acuity , Young Adult
3.
Sci Transl Med ; 2(46): 46ra61, 2010 Aug 25.
Article in English | MEDLINE | ID: mdl-20739681

ABSTRACT

Corneas from human donors are used to replace damaged tissue and treat corneal blindness, but there is a severe worldwide shortage of donor corneas. We conducted a phase 1 clinical study in which biosynthetic mimics of corneal extracellular matrix were implanted to replace the pathologic anterior cornea of 10 patients who had significant vision loss, with the aim of facilitating endogenous tissue regeneration without the use of human donor tissue. The biosynthetic implants remained stably integrated and avascular for 24 months after surgery, without the need for long-term use of the steroid immunosuppression that is required for traditional allotransplantation. Corneal reepithelialization occurred in all patients, although a delay in epithelial closure as a result of the overlying retaining sutures led to early, localized implant thinning and fibrosis in some patients. The tear film was restored, and stromal cells were recruited into the implant in all patients. Nerve regeneration was also observed and touch sensitivity was restored, both to an equal or to a greater degree than is seen with human donor tissue. Vision at 24 months improved from preoperative values in six patients. With further optimization, biosynthetic corneal implants could offer a safe and effective alternative to the implantation of human tissue to help address the current donor cornea shortage.


Subject(s)
Cornea/physiopathology , Keratoconus/surgery , Regeneration , Tissue Donors , Adolescent , Adult , Aged , Astigmatism , Extracellular Matrix , Follow-Up Studies , Humans , Keratoconus/physiopathology , Middle Aged , Visual Acuity
4.
Appl Microbiol Biotechnol ; 69(3): 245-52, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16240115

ABSTRACT

The use of genetically engineered microorganisms is a cost-effective, scalable technology for the production of recombinant human collagen (rhC) and recombinant gelatin (rG). This review will discuss the use of yeast (Pichia pastoris, Saccharomyces cerevisiae, Hansenula polymorpha) and of bacteria (Escherichia coli, Bacillus brevis) genetically engineered for the production of rhC and rG. P. pastoris is the preferred production system for rhC and rG. Recombinant strains of P. pastoris accumulate properly hydroxylated triple helical rhC intracellularly at levels up to 1.5 g/l. Coexpression of recombinant collagen with recombinant prolyl hydroxylase results in the synthesis of hydroxylated collagen with thermal stability similar to native collagens. The purified hydroxylated rhC forms fibrils that are structurally similar to fibrils assembled from native collagen. These qualities make rhC attractive for use in many medical applications. P. pastoris can also be engineered to secrete high levels (3 to 14 g/l ) of collagen fragments with defined length, composition, and physiochemical properties that serve as substitutes for animal-derived gelatins. The replacement of animal-derived collagen and gelatin with rhC and rG will result in products with improved safety, traceability, reproducibility, and quality. In addition, the rhC and rG can be engineered to improve the performance of products containing these biomaterials.


Subject(s)
Collagen/biosynthesis , Gelatin/metabolism , Pichia/genetics , Recombinant Proteins/biosynthesis , Biotechnology/methods , Collagen/chemistry , Collagen/genetics , Gelatin/chemistry , Gelatin/genetics , Humans , Pichia/metabolism , Recombinant Proteins/genetics
5.
Protein Expr Purif ; 40(2): 346-57, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15766877

ABSTRACT

Gelatin is used as a stabilizer in several vaccines. Allergic reactions to gelatins have been reported, including anaphylaxis. These gelatins are derived from animal tissues and thus represent a potential source of contaminants that cause transmissible spongiform encephalopathies. We have developed a low molecular weight human sequence gelatin that can substitute for the animal sourced materials. A cDNA fragment encoding 101 amino acids of the human proalpha1 (I) chain was amplified, cloned into plasmid pPICZalpha, integrated into Pichia pastoris strain X-33, and isolates expressing high levels of recombinant gelatin FG-5001 were identified. Purified FG-5001 was able to stabilize a live attenuated viral vaccine as effectively as porcine gelatin. This prototype recombinant gelatin was homogeneous with respect to molecular weight but consisted of several charge isoforms. These isoforms were separated by cation exchange chromatography and found to result from a combination of truncation of the C-terminal arginine and post-translational phosphorylation. Site-directed mutagenesis was used to identify the primary site of phosphorylation as serine residue 546; serine 543 was phosphorylated at a low level. A new construct was designed encoding an engineered gelatin, FG-5009, with point mutations that eliminated the charge heterogeneity. FG-5009 was not recognized by antigelatin IgE antibodies from children with confirmed gelatin allergies, establishing the low allergenic potential of this gelatin. The homogeneity of FG-5009, the ability to produce large quantities in a reproducible manner, and its low allergenic potential make this a superior substitute for the animal gelatin hydrolysates currently used to stabilize many pharmaceuticals.


Subject(s)
Cloning, Molecular/methods , Gelatin/adverse effects , Gelatin/genetics , Vaccines, Attenuated/chemistry , Antibodies , DNA, Complementary , Drug Hypersensitivity/immunology , Excipients , Gelatin/therapeutic use , Humans , Immunoglobulin E , Molecular Weight , Phosphorylation , Pichia/genetics , Point Mutation , Protein Engineering , Protein Isoforms , Vaccines, Attenuated/adverse effects
6.
BioDrugs ; 18(2): 103-19, 2004.
Article in English | MEDLINE | ID: mdl-15046526

ABSTRACT

Collagen is the main structural protein in vertebrates. It plays an essential role in providing a scaffold for cellular support and thereby affecting cell attachment, migration, proliferation, differentiation, and survival. As such, it also plays an important role in numerous approaches to the engineering of human tissues for medical applications related to tissue, bone, and skin repair and reconstruction. Currently, the collagen used in tissue engineering applications is derived from animal tissues, creating concerns related to the quality, purity, and predictability of its performance. It also carries the risk of transmission of infectious agents and precipitating immunological reactions. The recent development of recombinant sources of human collagen provides a reliable, predictable and chemically defined source of purified human collagens that is free of animal components. The triple-helical collagens made by recombinant technology have the same amino acid sequence as human tissue-derived collagen. Furthermore, by achieving the equivalent extent of proline hydroxylation via coexpression of genes encoding prolyl hydroxylase with the collagen genes, one can produce collagens with a similar degree of stability as naturally occurring material. The recombinant production process of collagen involves the generation of single triple-helical molecules that are then used to construct more complex three-dimensional structures. If one loosely defines tissue engineering as the use of a biocompatible scaffold combined with a biologically active agent (be it a gene or gene construct, growth factor or other biologically active agent) to induce tissue regeneration, then the production of recombinant human collagen enables the engineering of human tissue based on a human matrix or scaffold. Recombinant human collagens are an efficient scaffold for bone repair when combined with a recombinant bone morphogenetic protein in a porous, sponge-like format, and when presented as a membrane, sponge or gel can serve as a basis for the engineering of skin, cartilage and periodontal ligament, depending on the specific requirements of the chosen application.


Subject(s)
Biocompatible Materials , Collagen , Recombinant Proteins , Tissue Engineering/methods , Animals , Collagen/chemistry , Collagen/classification , Collagen/physiology , Humans , Recombinant Proteins/chemistry , Recombinant Proteins/classification , Recombinant Proteins/pharmacology , Tissue Engineering/trends
7.
Adv Drug Deliv Rev ; 55(12): 1547-67, 2003 Nov 28.
Article in English | MEDLINE | ID: mdl-14623401

ABSTRACT

The tools of recombinant protein expression are now being used to provide recombinant sources of both collagen and gelatin. The primary focus of this review is to discuss alternatives to bovine collagen for biomedical applications. Several recombinant systems have been developed for production of human sequence collagens. Mammalian and insect cells were initially used, but were thought to be too costly for commercial production. Yeast have been engineered to express high levels of type I homotrimer and heterotrimer and type II and type III collagen. Co-expression of collagen genes and cDNAs encoding the subunits of prolyl hydroxylase has lead to the synthesis of completely hydroxylated, thermostable collagens. Human types I and III collagen homotrimers have been expressed in transgenic tobacco plants, while transgenic mice have been engineered to produce full-length type I procollagen homotrimer as well as a alpha2 (I) homotrimeric mini-collagen. Most recently, a transgenic silkworm system was used to produce a fusion protein containing a collagenous sequence. Each of these transgenic systems holds great promise for the cost-effective large-scale production of recombinant human collagens. As seen in other recombinant expression systems, transgenic silkworms, tobacco, and mice lack sufficient endogenous prolyl hydroxylase activity to produce fully hydroxylated collagen. In mice and tobacco, this was overcome by over-expression of prolyl hydroxylase, analogous to what has been done in yeast and insect cell culture. In addition to recombinant alternatives to bovine collagen, other sources such as fish and sponge collagen are discussed briefly. Recombinant gelatin has been expressed in Pichia pastoris and Hansenula polymorpha in both non-hydroxylated and hydroxylated forms. Pichia was shown to be a highly productive system for gelatin production. The recombinant gelatins produced in yeast are of defined molecular weight and physio-chemical properties and represent a new biomaterial not previously available from animal sources. Genetic engineering has made great progress in the areas of recombinant collagen and gelatin expression, and there are now several alternatives to bovine material that offer an enhanced safety profile, greater reproducibility and quality, and the ability of these materials to be tailored to enhance product performance.


Subject(s)
Collagen , Drug Carriers , Gelatin , Animals , Chemistry, Pharmaceutical , Collagen/biosynthesis , Collagen/chemistry , Collagen/genetics , Drug Carriers/chemistry , Gelatin/chemistry , Gelatin/genetics , Humans , Organisms, Genetically Modified , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...