Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurophysiol ; 111(9): 1792-802, 2014 May.
Article in English | MEDLINE | ID: mdl-24523522

ABSTRACT

Sensory systems are designed to extract behaviorally relevant information from the environment. In seeking to understand a sensory system, it is important to understand the environment within which it operates. In the present study, we seek to characterize the natural scenes of tactile texture perception. During tactile exploration complex high-frequency vibrations are elicited in the fingertip skin, and these vibrations are thought to carry information about the surface texture of manipulated objects. How these texture-elicited vibrations depend on surface microgeometry and on the biomechanical properties of the fingertip skin itself remains to be elucidated. Here we record skin vibrations, using a laser-Doppler vibrometer, as various textured surfaces are scanned across the finger. We find that the frequency composition of elicited vibrations is texture specific and highly repeatable. In fact, textures can be classified with high accuracy on the basis of the vibrations they elicit in the skin. As might be expected, some aspects of surface microgeometry are directly reflected in the skin vibrations. However, texture vibrations are also determined in part by fingerprint geometry. This mechanism enhances textural features that are too small to be resolved spatially, given the limited spatial resolution of the neural signal. We conclude that it is impossible to understand the neural basis of texture perception without first characterizing the skin vibrations that drive neural responses, given the complex dependence of skin vibrations on both surface microgeometry and fingertip biomechanics.


Subject(s)
Touch Perception , Touch , Adult , Female , Fingers/innervation , Fingers/physiology , Humans , Male , Vibration
2.
PLoS One ; 7(2): e31203, 2012.
Article in English | MEDLINE | ID: mdl-22348055

ABSTRACT

Because tactile perception relies on the response of large populations of receptors distributed across the skin, we seek to characterize how a mechanical deformation of the skin at one location affects the skin at another. To this end, we introduce a novel non-contact method to characterize the surface waves produced in the skin under a variety of stimulation conditions. Specifically, we deliver vibrations to the fingertip using a vibratory actuator and measure, using a laser Doppler vibrometer, the surface waves at different distances from the locus of stimulation. First, we show that a vibration applied to the fingertip travels at least the length of the finger and that the rate at which it decays is dependent on stimulus frequency. Furthermore, the resonant frequency of the skin matches the frequency at which a subpopulation of afferents, namely Pacinian afferents, is most sensitive. We show that this skin resonance can lead to a two-fold increase in the strength of the response of a simulated afferent population. Second, the rate at which vibrations propagate across the skin is dependent on the stimulus frequency and plateaus at 7 m/s. The resulting delay in neural activation across locations does not substantially blur the temporal patterning in simulated populations of afferents for frequencies less than 200 Hz, which has important implications about how vibratory frequency is encoded in the responses of somatosensory neurons. Third, we show that, despite the dependence of decay rate and propagation speed on frequency, the waveform of a complex vibration is well preserved as it travels across the skin. Our results suggest, then, that the propagation of surface waves promotes the encoding of spectrally complex vibrations as the entire neural population is exposed to essentially the same stimulus. We also discuss the implications of our results for biomechanical models of the skin.


Subject(s)
Neurons, Afferent/physiology , Physical Stimulation , Skin/innervation , Vibration , Action Potentials , Animals , Hand , Humans , Mechanoreceptors/physiology , Physical Stimulation/methods , Primates
SELECTION OF CITATIONS
SEARCH DETAIL
...