Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Control Release ; 202: 93-100, 2015 Mar 28.
Article in English | MEDLINE | ID: mdl-25662228

ABSTRACT

Low-frequency ultrasound presents an attractive method for transdermal drug delivery. The controlled, yet non-specific nature of enhancement broadens the range of therapeutics that can be delivered, while minimizing necessary reformulation efforts for differing compounds. Long and inconsistent treatment times, however, have partially limited the attractiveness of this method. Building on recent advances made in this area, the simultaneous use of low- and high-frequency ultrasound is explored in a physiologically relevant experimental setup to enable the translation of this treatment to testing in vivo. Dual-frequency ultrasound, utilizing 20kHz and 1MHz wavelengths simultaneously, was found to significantly enhance the size of localized transport regions (LTRs) in both in vitro and in vivo models while decreasing the necessary treatment time compared to 20kHz alone. Additionally, LTRs generated by treatment with 20kHz+1MHz were found to be more permeable than those generated with 20kHz alone. This was further corroborated with pore-size estimates utilizing hindered-transport theory, in which the pores in skin treated with 20kHz+1MHz were calculated to be significantly larger than the pores in skin treated with 20kHz alone. This demonstrates for the first time that LTRs generated with 20kHz+1MHz are also more permeable than those generated with 20kHz alone, which could broaden the range of therapeutics and doses administered transdermally. With regard to safety, treatment with 20kHz+1MHz both in vitro and in vivo appeared to result in no greater skin disruption than that observed in skin treated with 20kHz alone, an FDA-approved modality. This study demonstrates that dual-frequency ultrasound is more efficient and effective than single-frequency ultrasound and is well-tolerated in vivo.


Subject(s)
Pharmaceutical Preparations/administration & dosage , Ultrasonics , Administration, Cutaneous , Animals , Female , In Vitro Techniques , Skin/metabolism , Skin Absorption , Swine
2.
J Pharm Sci ; 104(2): 362-7, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25250829

ABSTRACT

Both patients and physicians prefer the oral route of drug delivery. The gastrointestinal (GI) tract, though, limits the bioavailability of certain therapeutics because of its protease and bacteria-rich environment as well as general pH variability from pH 1 to 7. These extreme environments make oral delivery particularly challenging for the biologic class of therapeutics. Here, we demonstrate proof-of-concept experiments in swine that microneedle-based delivery has the capacity for improved bioavailability of a biologically active macromolecule. Moreover, we show that microneedle-containing devices can be passed and excreted from the GI tract safely. These findings strongly support the success of implementation of microneedle technology for use in the GI tract.


Subject(s)
Biological Products/administration & dosage , Drug Delivery Systems/methods , Equipment Design , Gastrointestinal Tract/physiology , Insulin/administration & dosage , Microinjections/instrumentation , Needles , Administration, Oral , Animals , Biological Availability , Humans , Software , Swine
3.
J Control Release ; 163(2): 154-60, 2012 Oct 28.
Article in English | MEDLINE | ID: mdl-22940128

ABSTRACT

Low-frequency ultrasound has been studied extensively due to its ability to enhance skin permeability. In spite of this effort, improvements in enhancing the efficacy of transdermal ultrasound treatments have been limited. Currently, when greater skin permeability is desired at a given frequency, one is limited to increasing the intensity or the duration of the ultrasound treatment, which carries the risk of thermal side effects. Therefore, the ability to increase skin permeability without increasing ultrasound intensity or treatment time would represent a significant and desirable outcome. Here, we hypothesize that the simultaneous application of two distinct ultrasound frequencies, in the range of 20 kHz to 3 MHz, can enhance the efficacy of ultrasound exposure. Aluminum foil pitting experiments showed a significant increase in cavitational activity when two frequencies were applied instead of just one low frequency. Additionally, in vitro tests with porcine skin indicated that the permeability and resulting formation of localized transport regions are greatly enhanced when two frequencies (low and high) are used simultaneously. These results were corroborated with glucose (180 Da) and inulin (5000 Da) transdermal flux experiments, which showed greater permeant delivery both into and through the dual-frequency pre-treated skin.


Subject(s)
Permeability/radiation effects , Skin Absorption/radiation effects , Skin/radiation effects , Sound , Aluminum , Animals , Female , Glucose/metabolism , In Vitro Techniques , Inulin/metabolism , Skin/metabolism , Swine
4.
J Control Release ; 158(2): 250-60, 2012 Mar 10.
Article in English | MEDLINE | ID: mdl-22100440

ABSTRACT

The synergism between low-frequency sonophoresis (LFS) and chemical penetration enhancers (CPEs), especially surfactants, in transdermal enhancement has been investigated extensively since this phenomenon was first observed over a decade ago. In spite of the identifying that the origin of this synergism is the increased penetration and subsequent dispersion of CPEs in the skin in response to LFS treatment, to date, no mechanism has been directly proposed to explain how LFS induces the observed increased transport of CPEs. In this study, we propose a plausible physical mechanism by which the transport of all CPEs is expected to have significantly increased flux into the localized-transport regions (LTRs) of LFS-treated skin. Specifically, the collapse of acoustic cavitation microjets within LTRs induces a convective flux. In addition, because amphiphilic molecules preferentially adsorb onto the gas/water interface of cavitation bubbles, amphiphiles have an additional adsorptive flux. In this sense, the cavitation bubbles effectively act as carriers for amphiphilic molecules, delivering surfactants directly into the skin when they collapse at the skin surface as cavitation microjets. The flux equations derived for CPE delivery into the LTRs and non-LTRs during LFS treatment, compared to that for untreated skin, explain why the transport of all CPEs, and to an even greater extent amphiphilic CPEs, is increased during LFS treatment. The flux model is tested with a non-amphiphilic CPE (propylene glycol) and both nonionic and ionic amphiphilic CPEs (octyl glucoside and sodium lauryl sulfate, respectively), by measuring the flux of each CPE into untreated skin and the LTRs and non-LTRs of LFS-treated skin. The resulting data shows very good agreement with the proposed flux model.


Subject(s)
Drug Delivery Systems , Models, Biological , Skin Absorption , Surface-Active Agents/metabolism , Acoustics/instrumentation , Administration, Cutaneous , Animals , Female , Glucosides/metabolism , Propylene Glycol/metabolism , Skin/metabolism , Sodium Dodecyl Sulfate/metabolism , Swine
5.
J Control Release ; 158(1): 85-92, 2012 Feb 28.
Article in English | MEDLINE | ID: mdl-22062691

ABSTRACT

Chemical penetration enhancers are often used to enhance transdermal drug delivery. However, the fundamental mechanisms that govern the interactions between penetration enhancers and skin are not fully understood. Therefore, the goal of this work was to identify naturally fluorescent penetration enhancers (FPEs) in order to utilize well-established fluorescence techniques to directly study the behavior of FPEs within skin. In this study, 12 fluorescent molecules with amphiphilic characteristics were evaluated as skin penetration enhancers. Eight of the molecules exhibited significant activity as skin penetration enhancers, determined using skin current enhancement ratios. In addition, to illustrate the novel, direct, and non-invasive visualization of the behavior of FPEs within skin, three case studies involving the use of two-photon fluorescence microscopy (TPM) are presented, including visualizing glycerol-mitigated and ultrasound-enhanced FPE skin penetration. Previous TPM studies have indirectly visualized the effect of penetration enhancers on the skin by using a fluorescent dye to probe the transdermal pathways of the enhancer. These effects can now be directly visualized and investigated using FPEs. Finally, future studies are proposed for generating FPE design principles. The combination of FPEs with fluorescence techniques represents a useful novel approach for obtaining physical insights on the behavior of penetration enhancers within the skin.


Subject(s)
Fluorescent Dyes/metabolism , Skin Absorption , Skin/metabolism , Administration, Cutaneous , Animals , Humans , Microscopy, Fluorescence, Multiphoton , Swine , Ultrasonics
6.
J Phys Chem B ; 115(6): 1394-402, 2011 Feb 17.
Article in English | MEDLINE | ID: mdl-21222449

ABSTRACT

Sulforhodamine B (SRB), a common fluorescent dye, is often considered to be a purely hydrophilic molecule, having no impact on bulk or interfacial properties of aqueous solutions. This assumption is due to the high water solubility of SRB relative to most fluorescent probes. However, in the present study, we demonstrate that SRB is in fact an amphiphile, with the ability to adsorb at an air/water interface and to incorporate into sodium dodecyl sulfate (SDS) micelles. In fact, SRB reduces the surface tension of water by up to 23 mN/m, and the addition of SRB to an aqueous SDS solution induces a significant decrease in the cmc of SDS. Molecular dynamics simulations were conducted to gain a deeper understanding of these findings. The simulations revealed that SRB has defined polar "head" and nonpolar "tail" regions when adsorbed at the air/water interface as a monomer. In contrast, when incorporated into SDS micelles, only the sulfonate groups were found to be highly hydrated, suggesting that the majority of the SRB molecule penetrates into the micelle. To illustrate the implications of the amphiphilic nature of SRB, an interesting case study involving the effect of SRB on ultrasound-mediated transdermal drug delivery is presented.


Subject(s)
Molecular Dynamics Simulation , Rhodamines/chemistry , Fluorescent Dyes/chemistry , Humans , Micelles , Permeability , Rhodamines/metabolism , Skin/metabolism , Sodium Dodecyl Sulfate/chemistry , Surface Tension
7.
J Control Release ; 152(3): 330-48, 2011 Jun 30.
Article in English | MEDLINE | ID: mdl-21238514

ABSTRACT

The use of ultrasound for the delivery of drugs to, or through, the skin is commonly known as sonophoresis or phonophoresis. The use of therapeutic and high frequencies of ultrasound (≥0.7MHz) for sonophoresis (HFS) dates back to as early as the 1950s, while low-frequency sonophoresis (LFS, 20-100kHz) has only been investigated significantly during the past two decades. Although HFS and LFS are similar because they both utilize ultrasound to increase the skin penetration of permeants, the mechanisms associated with each physical enhancer are different. Specifically, the location of cavitation and the extent to which each process can increase skin permeability are quite dissimilar. Although the applications of both technologies are different, they each have strengths that could allow them to improve current methods of local, regional, and systemic drug delivery. In this review, we will discuss the mechanisms associated with both HFS and LFS, specifically concentrating on the key mechanistic differences between these two skin treatment methods. Background on the relevant physics associated with ultrasound transmitted through aqueous media will also be discussed, along with implications of these phenomena on sonophoresis. Finally, a thorough review of the literature is included, dating back to the first published reports of sonophoresis, including a discussion of emerging trends in the field.


Subject(s)
Phonophoresis/methods , Phonophoresis/trends , Adjuvants, Pharmaceutic/pharmacology , Animals , Humans , Skin/diagnostic imaging , Skin/metabolism , Skin Absorption/drug effects , Ultrasonography
8.
J Pharm Sci ; 100(2): 512-29, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20740667

ABSTRACT

Recent advances in transdermal drug delivery utilizing low-frequency sonophoresis (LFS) and sodium lauryl sulfate (SLS) have revealed that skin permeability enhancement is not homogenous across the skin surface. Instead, highly perturbed skin regions, known as localized transport regions (LTRs), exist. Despite these findings, little research has been conducted to identify intrinsic properties and formation mechanisms of LTRs and the surrounding less-perturbed non-LTRs. By independently analyzing LTR, non-LTR, and total skin samples treated at multiple LFS frequencies, we found that the pore radii (r(pore)) within non-LTRs are frequency-independent, ranging from 18.2 to 18.5 Å, but significantly larger than r(pore) of native skin samples (13.6 Å). Conversely, r(pore) within LTRs increase significantly with decreasing frequency from 161 to 276 Å and to ∞ (>300 Å) for LFS/SLS-treated skin at 60, 40, and 20 kHz, respectively. Our findings suggest that different mechanisms contribute to skin permeability enhancement within each skin region. We propose that the enhancement mechanism within LTRs is the frequency-dependent process of cavitation-induced microjet collapse at the skin surface, whereas the increased r(pore) values in non-LTRs are likely due to SLS perturbation, with enhanced penetration of SLS into the skin resulting from the frequency-independent process of microstreaming.


Subject(s)
Skin Absorption/drug effects , Skin/drug effects , Sodium Dodecyl Sulfate/pharmacology , Surface-Active Agents/pharmacology , Ultrasonics , Administration, Cutaneous , Animals , Female , Fluoresceins/metabolism , Fluorescent Dyes/metabolism , Permeability/drug effects , Skin/metabolism , Swine
9.
J Pharm Sci ; 100(4): 1387-97, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20963845

ABSTRACT

This study investigated the effect of sodium lauryl sulfate (SLS) on skin structural perturbation when utilized simultaneously with low-frequency sonophoresis (LFS). Pig full-thickness skin (FTS) and pig split-thickness skin (STS) treated with LFS/SLS and LFS were analyzed in the context of the aqueous porous pathway model to quantify skin perturbation through changes in skin pore radius and porosity-to-tortuosity ratio (ε/τ). In addition, skin treatment times required to attain specific levels of skin electrical resistivity were analyzed to draw conclusions about the effect of SLS on reproducibility and predictability of skin perturbation. We found that LFS/SLS-treated FTS, LFS/SLS-treated STS, and LFS-treated FTS exhibited similar skin perturbation. However, LFS-treated STS exhibited significantly higher skin perturbation, suggesting greater structural changes to the less robust STS induced by the purely physical enhancement mechanism of LFS. Evaluation of ε/τ values revealed that LFS/SLS-treated FTS and STS have similar transport pathways, whereas LFS-treated FTS and STS have lower ε/τ values. In addition, LFS/SLS treatment times were much shorter than LFS treatment times for both FTS and STS. Moreover, the simultaneous use of SLS and LFS not only results in synergistic enhancement, as reflected in the shorter skin treatment times, but also in more predictable and reproducible skin perturbation.


Subject(s)
Skin/drug effects , Skin/metabolism , Sodium Dodecyl Sulfate/pharmacology , Surface-Active Agents/pharmacology , Animals , Female , Permeability/drug effects , Swine , Ultrasonics
10.
Expert Opin Drug Deliv ; 7(12): 1415-32, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21118031

ABSTRACT

IMPORTANCE OF THE FIELD: Transdermal delivery of macromolecules provides an attractive alternative route of drug administration when compared to oral delivery and hypodermic injection because of its ability to bypass the harsh gastrointestinal tract and deliver therapeutics non-invasively. However, the barrier properties of the skin only allow small, hydrophobic permeants to traverse the skin passively, greatly limiting the number of molecules that can be delivered via this route. The use of low-frequency ultrasound for the transdermal delivery of drugs, referred to as low-frequency sonophoresis (LFS), has been shown to increase skin permeability to a wide range of therapeutic compounds, including both hydrophilic molecules and macromolecules. Recent research has demonstrated the feasibility of delivering proteins, hormones, vaccines, liposomes and other nanoparticles through LFS-treated skin. In vivo studies have also established that LFS can act as a physical immunization adjuvant. LFS technology is already clinically available for use with topical anesthetics, with other technologies currently under investigation. AREAS COVERED IN THIS REVIEW: This review provides an overview of mechanisms associated with LFS-mediated transdermal delivery, followed by an in-depth discussion of the current applications of LFS technology for the delivery of hydrophilic drugs and macromolecules, including its use in clinical applications. WHAT THE READER WILL GAIN: The reader will gain an insight into the field of LFS-mediated transdermal drug delivery, including how the use of this technology can improve on more traditional drug delivery methods. TAKE HOME MESSAGE: Ultrasound technology has the potential to impact many more transdermal delivery platforms in the future due to its unique ability to enhance skin permeability in a controlled manner.


Subject(s)
Macromolecular Substances/administration & dosage , Pharmaceutical Preparations/administration & dosage , Skin Absorption/physiology , Administration, Cutaneous , Biological Transport/physiology , Drug Delivery Systems/methods , Humans , Hydrophobic and Hydrophilic Interactions , Macromolecular Substances/chemistry , Permeability , Pharmaceutical Preparations/chemistry , Phonophoresis
11.
J Control Release ; 145(1): 26-32, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20346994

ABSTRACT

The simultaneous application of ultrasound and the surfactant sodium lauryl sulfate (referred to as US/SLS) to skin enhances transdermal drug delivery (TDD) in a synergistic mechanical and chemical manner. Since full-thickness skin (FTS) and split-thickness skin (STS) differ in mechanical strength, US/SLS treatment may have different effects on their transdermal transport pathways. Therefore, we evaluated STS as an alternative to the well-established US/SLS-treated FTS model for TDD studies of hydrophilic permeants. We utilized the aqueous porous pathway model to compare the effects of US/SLS treatment on the skin permeability and the pore radius of pig and human FTS and STS over a range of skin electrical resistivity values. Our findings indicate that the US/SLS-treated pig skin models exhibit similar permeabilities and pore radii, but the human skin models do not. Furthermore, the US/SLS-enhanced delivery of gold nanoparticles and quantum dots (two model hydrophilic macromolecules) is greater through pig STS than through pig FTS, due to the presence of less dermis that acts as an artificial barrier to macromolecules. In spite of greater variability in correlations between STS permeability and resistivity, our findings strongly suggest the use of 700microm-thick pig STS to investigate the in vitro US/SLS-enhanced delivery of hydrophilic macromolecules.


Subject(s)
Pharmaceutical Preparations/administration & dosage , Phonophoresis , Skin Absorption/drug effects , Skin/drug effects , Sodium Dodecyl Sulfate/pharmacology , Surface-Active Agents/pharmacology , Administration, Cutaneous , Animals , Drug Delivery Systems , Electric Impedance , Gold/administration & dosage , Gold/chemistry , Humans , In Vitro Techniques , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Pharmaceutical Preparations/chemistry , Quantum Dots , Skin/metabolism , Sodium Dodecyl Sulfate/chemistry , Solubility , Sonication , Surface-Active Agents/chemistry , Swine
12.
Biomaterials ; 31(19): 5208-17, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20347484

ABSTRACT

Here we develop an injectable composite system based for repeated ultrasound-triggered on-demand drug delivery. An in situ-cross-linking hydrogel maintains model drug (dye)-containing liposomes in close proximity to gas-filled microbubbles that serve to enhance release events induced by ultrasound application. Dye release is tunable by varying the proportions of the liposomal and microbubble components, as well as the duration and intensity of the ultrasound pulses in vitro. Dye is minimal at baseline. The composite shows minimal cytotoxicity in vitro, and benign tissue reaction after subcutaneous injection in rats. Ultrasound application also triggers drug release for two weeks after injection in vivo.


Subject(s)
Hydrogels/administration & dosage , Hydrogels/chemistry , Liposomes/chemistry , Liposomes/radiation effects , Sonication , Animals , Hydrogels/radiation effects , Male , Mice , Microbubbles , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...