Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 15(16): 4477-4485, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38634502

ABSTRACT

Non-polarizable force fields fail to accurately predict free energies of aqueous electrolytes without compromising the predictive ability for densities and transport properties. A new approach is presented in which (1) TIP4P/2005 water and scaled charge force fields are used to describe the interactions in the liquid phase and (2) an additional Effective Charge Surface (ECS) is used to compute free energies at zero additional computational expense. The ECS is obtained using a single temperature-independent charge scaling parameter per species. Thereby, the chemical potential of water and the free energies of hydration of various aqueous salts (e.g., NaCl and LiCl) are accurately described (deviations less than 5% from experiments), in sharp contrast to calculations where the ECS is omitted (deviations larger than 20%). This approach enables accurate predictions of free energies of aqueous electrolyte solutions using non-polarizable force fields, without compromising liquid-phase properties.

2.
J Chem Theory Comput ; 19(9): 2616-2629, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37078869

ABSTRACT

We developed an open-source chemical reaction equilibrium solver in Python (CASpy, https://github.com/omoultosEthTuDelft/CASpy) to compute the concentration of species in any reactive liquid-phase absorption system. We derived an expression for a mole fraction-based equilibrium constant as a function of excess chemical potential, standard ideal gas chemical potential, temperature, and volume. As a case study, we computed the CO2 absorption isotherm and speciation in a 23 wt % N-methyldiethanolamine (MDEA)/water solution at 313.15 K, and compared the results with available data from the literature. The results show that the computed CO2 isotherms and speciations are in excellent agreement with experimental data, demonstrating the accuracy and the precision of our solver. The binary absorptions of CO2 and H2S in 50 wt % MDEA/water solutions at 323.15 K were computed and compared with available data from the literature. The computed CO2 isotherms showed good agreement with other modeling studies from the literature while the computed H2S isotherms did not agree well with experimental data. The experimental equilibrium constants used as an input were not adjusted for H2S/CO2/MDEA/water systems and need to be adjusted for this system. Using free energy calculations with two different force fields (GAFF and OPLS-AA) and quantum chemistry calculations, we computed the equilibrium constant (K) of the protonated MDEA dissociation reaction. Despite the good agreement of the OPLS-AA force field (ln[K] = -24.91) with the experiments (ln[K] = -23.04), the computed CO2 pressures were significantly underestimated. We systematically investigated the limitations of computing CO2 absorption isotherms using free energy and quantum chemistry calculations and showed that the computed values of µiex are very sensitive to the point charges used in the simulations, which limits the predictive power of this method.

3.
J Phys Chem C Nanomater Interfaces ; 126(45): 19424-19434, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36424997

ABSTRACT

There is a growing interest in the development of routes to produce formic acid from CO2, such as the electrochemical reduction of CO2 to formic acid. The solubility of CO2 in the electrolyte influences the production rate of formic acid. Here, the dependence of the CO2 solubility in aqueous HCOOH solutions with electrolytes on the composition and the NaCl concentration was studied by Continuous Fractional Component Monte Carlo simulations at 298.15 K and 1 bar. The chemical potentials of CO2, H2O, and HCOOH were obtained directly from single simulations, enabling the calculation of Henry coefficients and subsequently considering salting in or salting out effects. As the force fields for HCOOH and H2O may not be compatible due to the presence of strong hydrogen bonds, the Gibbs-Duhem integration test was used to test this compatibility. The combination of the OPLS/AA force field with a new set of parameters, in combination with the SPC/E force field for water, was selected. It was found that the solubility of CO2 decreases with increasing NaCl concentration in the solution and increases with the increase of HCOOH concentration. This continues up to a certain concentration of HCOOH in the solution, after which the CO2 solubility is high and the NaCl concentration has no significant effect.

4.
J Chem Phys ; 155(11): 114504, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34551525

ABSTRACT

Despite the widespread acknowledgment that deep eutectic solvents (DESs) have negligible vapor pressures, very few studies in which the vapor pressures of these solvents are measured or computed are available. Similarly, the vapor phase composition is known for only a few DESs. In this study, for the first time, the vapor pressures and vapor phase compositions of choline chloride urea (ChClU) and choline chloride ethylene glycol (ChClEg) DESs are computed using Monte Carlo simulations. The partial pressures of the DES components were obtained from liquid and vapor phase excess Gibbs energies, computed using thermodynamic integration. The enthalpies of vaporization were computed from the obtained vapor pressures, and the results were in reasonable agreement with the few available experimental data in the literature. It was found that the vapor phases of both DESs were dominated by the most volatile component (hydrogen bond donor, HBD, i.e., urea or ethylene glycol), i.e., 100% HBD in ChClEg and 88%-93% HBD in ChClU. Higher vapor pressures were observed for ChClEg compared to ChClU due to the higher volatility of ethylene glycol compared to urea. The influence of the liquid composition of the DESs on the computed properties was studied by considering different mole fractions (i.e., 0.6, 0.67, and 0.75) of the HBD. Except for the partial pressure of ethylene glycol in ChClEg, all the computed partial pressures and enthalpies of vaporization showed insensitivity toward the liquid composition. The activity coefficient of ethylene glycol in ChClEg was computed at different liquid phase mole fractions, showing negative deviations from Raoult's law.

5.
J Chem Inf Model ; 61(8): 3752-3757, 2021 08 23.
Article in English | MEDLINE | ID: mdl-34383501

ABSTRACT

We present several new major features added to the Monte Carlo (MC) simulation code Brick-CFCMC for phase- and reaction equilibria calculations (https://gitlab.com/ETh_TU_Delft/Brick-CFCMC). The first one is thermodynamic integration for the computation of excess chemical potentials (µex). For this purpose, we implemented the computation of the ensemble average of the derivative of the potential energy with respect to the scaling factor for intermolecular interactions (⟨∂U∂λ⟩). Efficient bookkeeping is implemented so that the quantity ∂U∂λ is updated after every MC trial move with negligible computational cost. We demonstrate the accuracy and reliability of the calculation of µex for sodium chloride in water. Second, we implemented hybrid MC/MD translation and rotation trial moves to increase the efficiency of sampling of the configuration space. In these trial moves, short Molecular Dynamics (MD) trajectories are performed to collectively displace or rotate all molecules in the system. These trajectories are accepted or rejected based on the total energy drift. The efficiency of these trial moves can be tuned by changing the time step and the trajectory length. The new trial moves are demonstrated using MC simulations of a viscous fluid (deep eutectic solvent).


Subject(s)
Molecular Dynamics Simulation , Software , Monte Carlo Method , Reproducibility of Results , Thermodynamics
6.
Article in English | MEDLINE | ID: mdl-32590364

ABSTRACT

In this work, we incorporated an ionic liquid (IL), 1-n-butyl-3-methylimidazolium methyl sulfate ([BMIM][MeSO4]) into two different metal organic frameworks (MOFs), UiO-66, and its amino-functionalized counterpart, NH2-UiO-66, to investigate the effects of ligand-functionalization on the thermal stability limits of IL/MOF composites. The as-synthesized IL/MOF composites were characterized in detail by combining X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller analysis (BET), X-ray fluorescence (XRF), infrared spectroscopies (FTIR), and their thermal stability limits were determined by thermogravimetric analysis (TGA). Characterization data confirmed the successful incorporation of the IL into each MOF and indicated the presence of direct interactions between them. A comparison of the interactions in [BMIM][MeSO4]-incorporated UiO-66 and NH2-UiO-66 with those in their 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6])-incorporated counterparts showed that the hydrophilic IL, [BMIM][MeSO4], interacts with the 1,4-benzenedicarboxylate (BDC) ligand of the UiO-66, while the hydrophobic IL, [BMIM][PF6], is interacting with the joints where zirconium metal cluster coordinates with BDC ligand. The TGA data demonstrated that the composite with the ligand-functionalized MOF, NH2-UiO-66, exhibited a lower percentage decrease in the maximum tolerable temperature compared to those of IL/UiO-66 composites. Moreover, it is discovered that when the IL is hydrophilic, its hydrogen bonding ability can be utilized to designate an interaction site on MOF's ligand structure which will lead to a lower reduction in thermal stability limits. These results provide insights for the rational design of IL/MOF composites and contribute towards the complete elucidation of structural factors controlling the thermal stability.

7.
Front Chem ; 8: 622567, 2020.
Article in English | MEDLINE | ID: mdl-33569371

ABSTRACT

We incorporated a water-stable ionic liquid (IL), 1-butyl-3-methylimidazolium hexafluorophosphate, [BMIM][PF6], into a water-stable metal-organic framework (MOF), MIL-53(Al), to generate the [BMIM][PF6]/MIL-53(Al) composite. This composite was examined for water purification by studying its capacity for methylene blue (MB) and methyl orange (MO) removal from aqueous solutions having either single dye or a mixture of both. Data illustrated that the removal efficiency and the maximum adsorption capacity of MIL-53(Al) were increased several times upon [BMIM][PF6] incorporation. For instance, within 1 min, 10 mg of pristine MIL-53(Al) adsorbed 23.3% MB from 10 mg/L of MB solution, while [BMIM][PF6]/MIL-53(Al) composite was adsorbed 82.3% MB in an identical solution. In the case of MO, 10 mg of pristine MIL-53(Al) achieved 27.8 and 53.6% MO removal from 10 mg/L of MO solution, while [BMIM][PF6]/MIL-53(Al) composite removed 61.4 and 99.2% within 5 min and 3 h, respectively. Moreover, upon [BMIM][PF6] incorporation, the maximum MB and MO adsorption capacities of the pristine MOF were increased from 84.5 to 44 mg/g to 204.9 to 60 mg/g, respectively. The adsorption of dyes in pristine MIL-53(Al) and [BMIM][PF6]/MIL-53(Al) followed a pseudo-second-order kinetic model and a Langmuir isotherm model. In a mixture of both dyes, the IL/MOF composite showed a doubled MB selectivity after the IL incorporation. The composite was successfully regenerated at least two times after its use in water purification to remove MB, MO, and their mixtures. Infrared (IR) spectra indicated that the MB/MO adsorption occurs on [BMIM][PF6]/MIL-53(Al) by electrostatic interactions, hydrogen bonding, and π-π interactions. These results showed that [BMIM][PF6]/MIL-53(Al) composite is a highly promising material for efficient water purification.

8.
Chem Asian J ; 14(20): 3655-3667, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31339661

ABSTRACT

Five different imidazolium-based ionic liquids (ILs) were incorporated into a metal-organic framework (MOF), MIL-53(Al), to investigate the effect of IL incorporation on the CO2 separation performance of MIL-53(Al). CO2 , CH4 , and N2 adsorption isotherms of the IL/MIL-53(Al) composites and pristine MIL-53(Al) were measured to evaluate the effect of the ILs on the CO2 /CH4 and CO2 /N2 selectivities of the MOF. Of the composite materials that were tested, [BMIM][PF6 ]/MIL-53(Al) exhibited the largest increase in CO2 /CH4 selectivity, 2.8-times higher than that of pristine MIL-53(Al), whilst [BMIM][MeSO4 ]/MIL-53(Al) exhibited the largest increase in CO2 /N2 selectivity, 3.3-times higher than that of pristine MIL-53(Al). A comparison of the CO2 separation potentials of the IL/MOF composites showed that the [BMIM][BF4 ]- and [BMIM][PF6 ]-incorporated MIL-53(Al) composites both showed enhanced CO2 /N2 and CO2 /CH4 selectivities at pressures of 1-5 bar compared to composites of CuBTC and ZIF-8 with the same ILs. These results demonstrate that MIL-53(Al) is a versatile platform for IL/MOF composites and could help to guide the rational design of new composites for target gas-separation applications.

9.
Energy Technol (Weinh) ; 7(7): 1900157, 2019 Jul.
Article in English | MEDLINE | ID: mdl-32140382

ABSTRACT

1-n-Butyl-3-methylimidazolium methyl sulfate is incorporated into MIL-53(Al). Detailed characterization is done by X-ray fluorescence, Brunauer-Emmett-Teller surface area, scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. Results show that ionic liquid (IL) interacts directly with the framework, significantly modifying the electronic environment of MIL-53(Al). Based on the volumetric gas adsorption measurements, CO2, CH4, and N2 adsorption capacities decreased from 112.0, 46.4, and 19.6 cc (STP) gMIL-53(Al) -1 to 42.2, 13.0, and 4.3 cc (STP) gMIL-53(Al) -1 at 5 bar, respectively, upon IL incorporation. Data show that this postsynthesis modification leads to more than two and threefold increase in the ideal selectivity for CO2 over CH4 and N2 separations, respectively, as compared with pristine MIL-53(Al). The isosteric heat of adsorption (Qst) values show that IL incorporation increases CO2 affinity and decreases CH4 and N2 affinities. Cycling adsorption-desorption measurements show that the composite could be regenerated with almost no decrease in the CO2 adsorption capacity for six cycles and confirm the lack of any significant IL leaching. The results offer MIL-53(Al) as an excellent platform for the development of a new class of IL/MOF composites with exceptional performance for CO2 separation.

SELECTION OF CITATIONS
SEARCH DETAIL
...