Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 15(15): 6941-6946, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37010358

ABSTRACT

Using four-wave mixing microscopy, we measure the coherent response and ultrafast dynamics of excitons and trions in MoSe2 monolayers grown by molecular beam epitaxy on thin films of hexagonal boron nitride. We assess inhomogeneous and homogeneous broadenings in the transition spectral lineshape. The impact of phonons on the homogeneous dephasing is inferred via the temperature dependence of the dephasing. Four-wave mixing mapping, combined with atomic force microscopy, reveals spatial correlations between exciton oscillator strength, inhomogeneous broadening and the sample morphology. The quality of the coherent optical response of epitaxially grown transition metal dichalcogenides now becomes comparable to the samples produced by mechanical exfoliation, enabling the coherent nonlinear spectroscopy of innovative materials, like magnetic layers or Janus semiconductors.

2.
Nano Lett ; 20(5): 3058-3066, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32105481

ABSTRACT

Monolayer transition-metal dichalcogenides (TMDs) manifest exceptional optical properties related to narrow excitonic resonances. However, these properties have been so far explored only for structures produced by techniques inducing considerable large-scale inhomogeneity. In contrast, techniques which are essentially free from this disadvantage, such as molecular beam epitaxy (MBE), have to date yielded only structures characterized by considerable spectral broadening, which hinders most of the interesting optical effects. Here, we report for the first time on the MBE-grown TMD exhibiting narrow and resolved spectral lines of neutral and charged exciton. Moreover, our material exhibits unprecedented high homogeneity of optical properties, with variation of the exciton energy as small as ±0.16 meV over a distance of tens of micrometers. Our recipe for MBE growth is presented for MoSe2 and includes the use of atomically flat hexagonal boron nitride substrate. This recipe opens a possibility of producing TMD heterostructures with optical quality, dimensions, and homogeneity required for optoelectronic applications.

3.
Nanotechnology ; 31(21): 215710, 2020 May 22.
Article in English | MEDLINE | ID: mdl-32050170

ABSTRACT

Wurtzite CdTe and (Cd,Mn)Te nanowires embedded in (Cd,Mg)Te shells are grown by employing vapour-liquid-solid growth mechanism in a system for molecular beam epitaxy. A combined study involving cathodoluminescence, transmission electron microscopy and micro-photoluminescence is used to correlate optical and structural properties in these structures. Typical features of excitonic emission from individual wurtzite nanowires are highlighted including the emission energy of 1.65 eV, polarization properties and the appearance B-exciton related emission at high excitation densities. Angle dependent magneto-optical study performed on individual (Cd,Mn)Te nanowires reveals heavy-hole-like character of A-excitons typical for wurtzite structure and allows to determine the crystal field splitting, ΔCR. The impact of the strain originating from the lattice mismatched shell is discussed and supported by theoretical calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...