Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Biochem Biotechnol ; 196(3): 1316-1349, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37392324

ABSTRACT

Cervical cancer is one of the main causes of cancer death in women globally, and its epidemiology is similar to that of a low-infectious venereal illness. Many sexual partners and early age at first intercourse have been demonstrated to have a significant influence on risk. TGF-ß1 is a multifunctional cytokine that is required for cervical carcinoma metastasis, tumor development, progression, and invasion. The TGF-ß1 signaling system plays a paradoxical function in cancer formation, suppressing early-stage tumor growth while increasing tumor progression and metastasis. Importantly, TGF-ß1 and TGF-ß receptor 1 (TGF-ßR1), two components of the TGF-ß signaling system, are substantially expressed in a range of cancers, including breast cancer, colon cancer, gastric cancer, and hepatocellular carcinoma. The current study aims to investigate possible inhibitors targeting TGF-ß1 using molecular docking and dynamic simulations. To target TGF-ß1, we used anti-cancer drugs and small molecules. MVD was utilized for virtual screening, and the highest scoring compound was then subjected to MD simulations using Schrodinger software package v2017-1 (Maestro v11.1) to identify the most favorable lead interactions against TGF-ß1. The Nilotinib compound has shown the least XP Gscore of -2.581 kcal/mol, 30ns MD simulations revealing that the Nilotinib- TGF-ß1 complex possesses the lowest energy of -77784.917 kcal/mol. Multiple parameters, including Root Mean Square Deviation, Root Mean Square Fluctuation, and Intermolecular Interactions, were used to analyze the simulation trajectory. Based on the results; we conclude that the ligand nilotinib appears to be a promising prospective TGF-ß1inhibitor for reducing TGF-ß1 expression ad halting cervical cancer progression.


Subject(s)
Transforming Growth Factor beta1 , Uterine Cervical Neoplasms , Female , Humans , Transforming Growth Factor beta1/metabolism , Uterine Cervical Neoplasms/drug therapy , Molecular Docking Simulation , Cell Line, Tumor , Prospective Studies , Early Detection of Cancer
2.
Appl Biochem Biotechnol ; 195(12): 7708-7737, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37086375

ABSTRACT

Gastric cancer is the world's second leading cause of cancer-related fatalities, with the epidemiology changing over the previous several decades. FOXOs are the O subfamily of the forkhead box (FOX) transcription factor family, which consists of four members: FOXO1, FOXO3, FOXO4, and FOXO6. FOXO6 mRNA and protein levels are increased in gastric cancer tissues. FOXO6 forced overexpression enhances gastric cancer cell growth, while knockdown decreases proliferation. In our study, the GEPIA, Kaplan-Meier, KEGG, and STRING databases were used to determine FOXO6 mRNA expression, overall survival ratio, interactive pathways, and top 10 associated proteins in gastric cancer respectively. Due to the lack of a solved structure for FOXO6, homology modeling was performed to obtain a 3D structure model, and we used anti-cancer drugs and small molecules to target FOXO6 for identifying a potential selective FOXO6 inhibitor. The chemical composition of the proteins and ligands has a significant impact on docking procedure performance. With this in mind, a critical evaluation of the performance of three regularly used docking routines was carried out: MVD, AutoDock Vina in PyRx, and ArgusLab. The binding affinities, docking scores, and intermolecular interactions were used as assessment criteria. In the study, the porfimer sodium showed excellent binding affinity to the FOXO6 protein. The major three docking software packages were used to analyze the scoring/H-bonding energy and intermolecular interactions. Based on the results, we concluded that FOXO6 was upregulated in gastric cancer and the ligand porfimer sodium emerges as a promising potential FOXO6 inhibitor to curtail gastric cancer progression.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Dihematoporphyrin Ether , Drug Repositioning , Early Detection of Cancer , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , RNA, Messenger
3.
Appl Biochem Biotechnol ; 195(12): 7766-7795, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37086377

ABSTRACT

Cervical cancer is one of the major causes of death in women, especially in developing countries bearing more than a quarter of the global burden. Secreted phosphoprotein-1, also known as OPN (osteopontin), is an integrin-binding glycophosphoprotein that is overexpressed in a variety of tumors. OPN is a chemokine-like calcified ECM-associated protein that plays a crucial role in evaluating the metastatic potential of various cancers. However, the role of SPP1 in the tumor microenvironment and associated signaling pathways in CC is still unclear. In our study, three CC microarray datasets (GSE9750, GSE46857, and GSE67522) were obtained from the GEO database to identify the differentially expressed genes. Enrichment analysis was carried out by Enrichr and ShinyGO and the PPI interaction network was created by using String and Cytoscape. GEPIA datasets were used to validate the top 10 hub genes, and virtual screening, docking, and dynamic simulation studies were used to identify a suitable inhibitor against the OPN protein using MVD, PyRx, and GROMACS respectively. Our results show that a total of 11 DEGs were common for three datasets and gene ontology pathway enrichment analysis revealed that 2 biological processes i.e. programmed cell death and animal organ development commonly affected mechanisms in all three datasets. Docking and dynamic studies revealed that Entrectinib showed excellent binding affinity against OPN protein. Based on the results, we conclude that OPN is one of the most upregulated genes in cervical cancer and Entrectinib emerges to be a promising potential OPN inhibitor to curtail cervical cancer progression. Schematic representation: The schematic representation of methodology steps is illustrated in the graphical abstract. Schematic representation of methodology.


Subject(s)
Osteopontin , Uterine Cervical Neoplasms , Animals , Humans , Female , Osteopontin/genetics , Osteopontin/metabolism , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/genetics , Benzamides , Gene Expression Profiling , Computational Biology/methods , Tumor Microenvironment
4.
Gene ; 824: 146381, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35271951

ABSTRACT

Cervical cancer (CC) is the most prevalent malignant gynecological tumor with limited treatments. The present study describes the role of SPP1 in cancer progression, SPP1 emerged as one of the most overexpressed genes identified through clariom D transcriptome microarray. This investigation aims towards identifying a potential gene with significant prognostic value for detection and early diagnosis of cervical cancer. The elevated expression of SPP1 in cervical squamous cell carcinoma tissue was validated across GEO (Gene Expression Omnibus) microarray data sets, TCGA (The Cancer Genome Atlas), and Oncomine databases. SPP1 expression was found to be prognostically significant, showing association with poor survival rate of the patients. Our study intended to assess the expression of secreted phosphoprotein (SPP1) gene at mRNA and protein levels, and to explore the association of single nucleotide polymorphisms of SPP1 with risk of CC. Further, receiver operating characteristics (ROC) curve was plotted to determine the levels of SPP1 to differentiate CC against control. Results revealed significant (p < 0.01) stage-wise upregulation of SPP1 in CC compared to the normal cervical tissue and this was further confirmed using Immunohistochemistry and real-time PCR. The ROC for SPP1 demonstrated good selective power to differentiate malignant CC and non-malignant cervical tissues. The SPP1 gene -443 T > C promoter polymorphisms are found to be significantly predominant in the disease group and Insilico analysis by the TRANSFAC software confirms its association with loss of STAT6 transcription factor binding site leading to overexpression of the SPP1.


Subject(s)
Carcinoma, Squamous Cell , Papillomavirus Infections , Uterine Cervical Neoplasms , Carcinoma, Squamous Cell/genetics , Female , Humans , Osteopontin/genetics , Osteopontin/metabolism , Papillomavirus Infections/genetics , Transcriptome , Uterine Cervical Neoplasms/genetics
5.
Appl Biochem Biotechnol ; 194(1): 570-586, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34705247

ABSTRACT

Cervical cancer is the second most common cause of cancer deaths in women worldwide and remains the main reason of mortality among women of reproductive age in developing countries. Nitric oxide is involved in several physiological functions inclusive of inflammatory and immune responses. However, the function of NO in tumor biology is debatable. The inducible NOS (iNOS/NOS2) isoform is the one responsible to maintain the levels of NO, and it exhibits pleotropic effects in various cancers with concentration-dependent pro- and anti-tumor effects. iNOS triggers angiogenesis and endothelial cell migration in tumors by regulating the levels of vascular endothelial growth factor (VEGF). In drug discovery, drug repurposing involves investigations of approved drug candidates to treat various other diseases. In this study, we used anti-cancer drugs and small molecules to target iNOS and identify a potential selective iNOS inhibitor. The structures of ligands were geometrically optimized and energy minimized using Hyperchem software. Molecular docking was performed using Molegro virtual docker, and ligands were selected based on MolDock score, Rerank score, and H-bonding energy. In the study shown, venetoclax compound demonstrated excellent binding affinity to iNOS protein. This compound exhibited the lowest MolDock score and Rerank score with better H-bonding energy to iNOS. The binding efficacy of venetoclax was analyzed by performing molecular docking and molecular dynamic simulations. Multiple parameters were used to analyze the simulation trajectory, like root mean square deviation (RMSD), radius of gyration (Rg), and hydrogen bond interactions. Based on the results, venetoclax emerges to be a promising potential iNOS inhibitor to curtail cervical cancer progression.


Subject(s)
Antineoplastic Agents/chemistry , Enzyme Inhibitors/chemistry , Molecular Docking Simulation , Neoplasm Proteins/antagonists & inhibitors , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide Synthase Type II/chemistry , Uterine Cervical Neoplasms/enzymology , Antineoplastic Agents/therapeutic use , Drug Screening Assays, Antitumor , Enzyme Inhibitors/therapeutic use , Female , Humans , Neoplasm Proteins/chemistry , Neoplasm Proteins/metabolism , Nitric Oxide Synthase Type II/metabolism , Uterine Cervical Neoplasms/drug therapy
6.
Oxid Med Cell Longev ; 2021: 6692628, 2021.
Article in English | MEDLINE | ID: mdl-33815659

ABSTRACT

This work is aimed at investigating the expression levels of inducible nitric oxide synthase (iNOS) in cervical cancer and identifying a potential iNOS inhibitor. The data mining studies performed advocated iNOS to be a promising biomarker for cancer prognosis, as it is highly overexpressed in several malignant cancers. The elevated iNOS was found to be associated with poor survival and increased tumor aggressiveness in cervical cancer. Immunohistochemical and RT-PCR investigations of iNOS showed significant upregulation of endogenous iNOS expression in the cervical tumor samples, thus making iNOS a potent target for decreasing tumor inflammation and aggressiveness. Andrographolide, a plant-derived diterpenoid lactone, is widely reported to be effective against infections and inflammation, causing no adverse side effects on humans. In the current study, we investigated the effect of andrographolide on the prognostic value of iNOS expression in cervical cancer, which has not been reported previously. The binding efficacy of andrographolide was analyzed by performing molecular docking and molecular dynamic simulations. Multiple parameters were used to analyze the simulation trajectory, like root mean square deviation (RMSD), torsional degree of freedom, protein-root mean square fluctuations (P-RMSF), ligand RMSF, total number of intramolecular hydrogen bonds, secondary structure elements (SSE) of the protein, and protein complex with the time-dependent functions of MDS. Ligand-protein interactions revealed binding efficacy of andrographolide with tryptophan amino acid of iNOS protein. Cancer cell proliferation, cell migration, cell cycle analysis, and apoptosis-mediated cell death were assessed in vitro, post iNOS inhibition induced by andrographolide treatment (demonstrated by Western blot). Results. Andrographolide exhibited cytotoxicity by inhibiting the in vitro proliferation of cervical cancer cells and also abrogated the cancer cell migration. A significant increase in apoptosis was observed with increasing andrographolide concentration, and it also induced cell cycle arrest at G1-S phase transition. Our results substantiate that andrographolide significantly inhibits iNOS expression and exhibits antiproliferative and proapoptotic effects on cervical cancer cells.


Subject(s)
Apoptosis , Diterpenes/pharmacology , Nitric Oxide Synthase Type II/antagonists & inhibitors , Uterine Cervical Neoplasms/pathology , Adult , Animals , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , HeLa Cells , Humans , Ligands , Middle Aged , Molecular Docking Simulation , Molecular Dynamics Simulation , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Reproducibility of Results , Thermodynamics , Uterine Cervical Neoplasms/genetics , Wound Healing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...