Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36771842

ABSTRACT

Nanomaterials have been extensively used in polymer nanocomposite membranes due to the inclusion of unique features that enhance water and wastewater treatment performance. Compared to the pristine membranes, the incorporation of nanomodifiers not only improves membrane performance (water permeability, salt rejection, contaminant removal, selectivity), but also the intrinsic properties (hydrophilicity, porosity, antifouling properties, antimicrobial properties, mechanical, thermal, and chemical stability) of these membranes. This review focuses on applications of different types of nanomaterials: zero-dimensional (metal/metal oxide nanoparticles), one-dimensional (carbon nanotubes), two-dimensional (graphene and associated structures), and three-dimensional (zeolites and associated frameworks) nanomaterials combined with polymers towards novel polymeric nanocomposites for water and wastewater treatment applications. This review will show that combinations of nanomaterials and polymers impart enhanced features into the pristine membrane; however, the underlying issues associated with the modification processes and environmental impact of these membranes are less obvious. This review also highlights the utility of computational methods toward understanding the structural and functional properties of the membranes. Here, we highlight the fabrication methods, advantages, challenges, environmental impact, and future scope of these advanced polymeric nanocomposite membrane based systems for water and wastewater treatment applications.

2.
Ultrason Sonochem ; 67: 105163, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32416575

ABSTRACT

This paper reports on sonochemically catalyzed atom transfer radical polymerization (SONO-ATRP) polyelectrolyte synthesis and chain-end functionalization to single-walled carbon nanotubes (SWCNT). This all aqueous process is kinetically facile without use of initiator, or reducing agents and with very low concentrations of catalyst. The process achieves high functionalization density of polymer onto the SWCNTs. These functionalized nanoscale resins (NanoResins) exhibit high performance as fast and sustainable water purification materials. SONO-ATRP of vinyl benzyl trimethyl ammonium chloride (vbTMAC) was performed in aqueous medium resulting in short polyelectrolyte strands with high atom economy and high monomer conversions (93%) at room temperature using a thin probe sonicator (144Wcm-2, 20 kHz, for 4 h). Kinetics analysis showed first order kinetics with respect to monomer concentration in presence of or absence of sonication power. Low temperature SONO-ATRP functionalization of SWCNTs is achieved within two hours without added reducing agent while similar functionalization density using reducing agents without sonochemistry required 12 h under reflux conditions. Functionalized NanoResin membranes were tested against surrogate analyte and demonstrated high performance Thomas Model breakthrough curves with a maximum adsorption capacity of 139 ± 1 mgg-1 and water flux of 692 Lm-2h-1bar-1 at one atmosphere pressure. Moreover, these materials are easily regenerated and reused without loss of performance or degradation.

3.
ACS Appl Mater Interfaces ; 8(28): 18540-9, 2016 Jul 20.
Article in English | MEDLINE | ID: mdl-27348616

ABSTRACT

As human health concerns over disinfection byproducts (DBP) in drinking water increase, so does the need to develop new materials that remove them rapidly and at high capacity. Ion exchange (IEX) is an effective method for the removal of natural organic matter (NOM), especially anion exchange resins (AERs) with quaternary ammonium functional groups. However, capacity is limited in existing commercial resin materials because adsorbates can only interact with the outermost surface area, which makes these products inefficient on a mass basis. We have synthesized a novel "NanoResin" exploiting the enhanced NOM removal of the quaternary ammonium resin while utilizing the vast surface area of SWCNTs, which act as scaffolding for the resin. Our nanomaterials show increased adsorption capacity compared to commercially available adsorbents, in a fraction of the time. This NanoResin requires only about 10 s to reach ion-exchange equilibrium. Comparatively, commercial AERs only achieved partial removal after more than 30 min. High capacity adsorption of a low molecular weight (MW) surrogate has been measured. NOM removal was demonstrated in solutions of both low and high specific UV absorbance (SUVA) composition with these nanomaterials. Additionally, the NanoResin showed enhanced removal of a NOM concentrate sample taken from Myrtle Beach, SC, demonstrating NanoResin is an effective method of removal for refractory NOM in a natural aqueous environment. Synthesis and characterization of the polymers and nanomaterials are presented below. Adsorption capacity, adsorption kinetics, and the regeneration and reusability of these new materials for NOM removal are described. The open matrix microstructure precludes any intraparticle diffusion of adsorbates; thus, these nanomaterials act as a "contact resin".

4.
Langmuir ; 28(1): 264-71, 2012 Jan 10.
Article in English | MEDLINE | ID: mdl-22126393

ABSTRACT

The interaction enthalpy of amide solvents with single-walled carbon nanotube (SWCNT) dispersions is measured using isothermal titration calorimetry (ITC). N,N-Dimethyl-formamide (DMF) and N-methyl-2-pyrilidone (NMP) were used to make dispersions of highly purified (6,5) SWCNTs. Using isothermal titration calorimetry, the ΔH and K(A) terms related to the solvent-nanotube interactions were measured, and ΔG and ΔS of the interaction were determined. It was found that the interaction enthalpy of NMP with SWCNTs dispersed in DMF was exothermic. The addition of a second solvent into a NMP or DMF dispersion produced spontaneous exfoliation of SWCNT bundles as the solvent properties became more favorable. During the titration, a positive change in interaction entropy within the dispersed system due to the unbundling of SWCNTs was measured. From blank titrations of pure DMF into pure NMP and the reverse, dilution enthalpies were also calculated and compared to the literature, along with the corresponding enthalpic interaction coefficients, h(xx) and h(xxx). From our results, ITC appears to be a viable technique for measuring the interaction of solvent molecules with the surface of SWCNTs and for measuring the effect of mixed solvent properties on SWCNT dispersions.


Subject(s)
Amides/chemistry , Calorimetry/methods , Nanotubes, Carbon , Solvents/chemistry , Entropy , Spectrophotometry, Ultraviolet , Spectroscopy, Near-Infrared
5.
J Am Chem Soc ; 132(2): 791-7, 2010 Jan 20.
Article in English | MEDLINE | ID: mdl-20014792

ABSTRACT

Ultrasonication is a common method for dispersing nanoparticles and colloids. We have found that, under certain conditions, unintended sonochemical reactions can be initiated by the incident ultrasonic energy, yielding unwanted byproducts. In this work, we determined that methyl hydroperoxide can be produced by an autoxidation chain reaction when ultrasonicating polar aprotic solvents containing methyl groups. Methyl radicals were detected during ultrasonication by their interaction with lucigenin, which emits sonochemiluminescence. A colorimetric triiodide test was used to confirm the presence of a hydroperoxide. The concentration of methyl hydroperoxide as a function of the ultrasonication time was measured by titration with NaOH. When above the critical coagulation concentration, this sonochemical byproduct collapses the electrical double layer, disrupting the dispersion stability and lowering the dispersion limits. This is significant when developing ultrasonication processes for dispersion of nanoparticles and colloids. There are no other examples of sonochemically initiated solvent autoxidation destabilizing single-walled carbon nanotube dispersions reported in the literature.

SELECTION OF CITATIONS
SEARCH DETAIL
...