Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Anesthesiology ; 140(1): 52-61, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37787745

ABSTRACT

BACKGROUND: Malignant hyperthermia (MH) susceptibility is a heritable musculoskeletal disorder that can present as a potentially fatal hypermetabolic response to triggering anesthesia agents. Genomic screening for variants in MH-associated genes RYR1 and CACNA1S provides an opportunity to prevent morbidity and mortality. There are limited outcomes data from disclosing variants in RYR1, the most common MH susceptibility gene, in unselected populations. The authors sought to identify the rate of MH features or fulminant episodes after triggering agent exposure in an unselected population undergoing genomic screening including actionable RYR1 variants. METHODS: The MyCode Community Health Initiative by Geisinger (USA) is an electronic health record-linked biobank that discloses pathogenic and likely pathogenic variants in clinically actionable genes to patient-participants. Available electronic anesthesia and ambulatory records for participants with actionable RYR1 results returned through December 2020 were evaluated for pertinent findings via double-coded chart reviews and reconciliation. Descriptive statistics for observed phenotypes were calculated. RESULTS: One hundred fifty-two participants had an actionable RYR1 variant disclosed during the study period. None had previous documented genetic testing for MH susceptibility; one had previous contracture testing diagnosing MH susceptibility. Sixty-eight participants (44.7%) had anesthesia records documenting triggering agent exposure during at least one procedure. None received dantrolene treatment or had documented muscle rigidity, myoglobinuria, hyperkalemia, elevated creatine kinase, severe myalgia, or tea-colored urine. Of 120 possibly MH-related findings (postoperative intensive care unit admissions, hyperthermia, arterial blood gas evaluation, hypercapnia, or tachycardia), 112 (93.3%) were deemed unlikely to be MH events; 8 (6.7%) had insufficient records to determine etiology. CONCLUSIONS: Results demonstrate a low frequency of classic intraanesthetic hypermetabolic phenotypes in an unselected population with actionable RYR1 variants. Further research on the actionability of screening for MH susceptibility in unselected populations, including economic impact, predictors of MH episodes, and expanded clinical phenotypes, is necessary.


Subject(s)
Malignant Hyperthermia , Ryanodine Receptor Calcium Release Channel , Humans , Genetic Testing , Malignant Hyperthermia/diagnosis , Malignant Hyperthermia/genetics , Malignant Hyperthermia/pathology , Metagenomics , Mutation , Phenotype , Ryanodine Receptor Calcium Release Channel/genetics
2.
PLoS One ; 15(11): e0242532, 2020.
Article in English | MEDLINE | ID: mdl-33237927

ABSTRACT

BACKGROUND: The COVID-19 pandemic is stretching medical resources internationally, sometimes creating ventilator shortages that complicate clinical and ethical situations. The possibility of needing to ventilate multiple patients with a single ventilator raises patient health and safety concerns in addition to clinical conditions needing treatment. Wherever ventilators are employed, additional tubing and splitting adaptors may be available. Adjustable flow-compensating resistance for differences in lung compliance on individual limbs may not be readily implementable. By exploring a number and range of possible contributing factors using computational simulation without risk of patient harm, this paper attempts to define useful bounds for ventilation parameters when compensatory resistance in limbs of a shared breathing circuit is not possible. This desperate approach to shared ventilation support would be a last resort when alternatives have been exhausted. METHODS: A whole-body computational physiology model (using lumped parameters) was used to simulate each patient being ventilated. The primary model of a single patient with a dedicated ventilator was augmented to model two patients sharing a single ventilator. In addition to lung mechanics or estimation of CO2 and pH expected for set ventilation parameters (considerations of lung physiology alone), full physiological simulation provides estimates of additional values for oxyhemoglobin saturation, arterial oxygen tension, and other patient parameters. A range of ventilator settings and patient characteristics were simulated for paired patients. FINDINGS: To be useful for clinicians, attention has been directed to clinically available parameters. These simulations show patient outcome during multi-patient ventilation is most closely correlated to lung compliance, oxygenation index, oxygen saturation index, and end-tidal carbon dioxide of individual patients. The simulated patient outcome metrics were satisfactory when the lung compliance difference between two patients was less than 12 mL/cmH2O, and the oxygen saturation index difference was less than 2 mmHg. INTERPRETATION: In resource-limited regions of the world, the COVID-19 pandemic will result in equipment shortages. While single-patient ventilation is preferable, if that option is unavailable and ventilator sharing using limbs without flow resistance compensation is the only available alternative, these simulations provide a conceptual framework and guidelines for clinical patient selection.


Subject(s)
COVID-19/prevention & control , Computer Simulation , Patient Safety , Respiration, Artificial/instrumentation , Respiratory Mechanics/physiology , SARS-CoV-2 , Ventilators, Mechanical/supply & distribution , COVID-19/epidemiology , COVID-19/virology , Carbon Dioxide , Humans , Hydrogen-Ion Concentration , Lung/physiology , Lung Compliance , Oxygen , Pandemics , Tidal Volume/physiology
3.
BMC Med ; 17(1): 168, 2019 08 28.
Article in English | MEDLINE | ID: mdl-31455332

ABSTRACT

BACKGROUND: The alpha-adrenergic agonist phenylephrine is often used to treat hypotension during anesthesia. In clinical situations, low blood pressure may require prompt intervention by intravenous bolus or infusion. Differences in responsiveness to phenylephrine treatment are commonly observed in clinical practice. Candidate gene studies indicate genetic variants may contribute to this variable response. METHODS: Pharmacological and physiological data were retrospectively extracted from routine clinical anesthetic records. Response to phenylephrine boluses could not be reliably assessed, so infusion rates were used for analysis. Unsupervised k-means clustering was conducted on clean data containing 4130 patients based on phenylephrine infusion rate and blood pressure parameters, to identify potential phenotypic subtypes. Genome-wide association studies (GWAS) were performed against average infusion rates in two cohorts: phase I (n = 1205) and phase II (n = 329). Top genetic variants identified from the meta-analysis were further examined to see if they could differentiate subgroups identified by k-means clustering. RESULTS: Three subgroups of patients with different response to phenylephrine were clustered and characterized: resistant (high infusion rate yet low mean systolic blood pressure (SBP)), intermediate (low infusion rate and low SBP), and sensitive (low infusion rate with high SBP). Differences among clusters were tabulated to assess for possible confounding influences. Comorbidity hierarchical clustering showed the resistant group had a higher prevalence of confounding factors than the intermediate and sensitive groups although overall prevalence is below 6%. Three loci with P < 1 × 10-6 were associated with phenylephrine infusion rate. Only rs11572377 with P = 6.09 × 10-7, a 3'UTR variant of EDN2, encoding a secretory vasoconstricting peptide, could significantly differentiate resistant from sensitive groups (P = 0.015 and 0.018 for phase I and phase II) or resistant from pooled sensitive and intermediate groups (P = 0.047 and 0.018). CONCLUSIONS: Retrospective analysis of electronic anesthetic records data coupled with the genetic data identified genetic variants contributing to variable sensitivity to phenylephrine infusion during anesthesia. Although the identified top gene, EDN2, has robust biological relevance to vasoconstriction by binding to endothelin type A (ETA) receptors on arterial smooth muscle cells, further functional as well as replication studies are necessary to confirm this association.


Subject(s)
Adrenergic alpha-1 Receptor Agonists/administration & dosage , Anesthesia/adverse effects , Hypotension/chemically induced , Hypotension/genetics , Phenylephrine/administration & dosage , Adult , Blood Pressure/drug effects , Female , Genome-Wide Association Study , Humans , Infusions, Intravenous , Pregnancy , Retrospective Studies
4.
AMIA Jt Summits Transl Sci Proc ; 2019: 672-679, 2019.
Article in English | MEDLINE | ID: mdl-31259023

ABSTRACT

Electroconvulsive therapy (ECT) is an effective and rapid treatment for severe depression, however predictors of therapeutic outcomes remain insufficiently understood. Ictal duration and postictal suppression are two outcomes that may be correlated with patient response, yet patient and treatment variables which may influence these outcomes have not been thoroughly explored. We collected ECT stimulus metrics, EEG parameters, patient demographics, primary diagnosis, and anesthesia type for retrospective ECTs. Univariate and multivariate mixed-effects linear regression models were used to identify variables associated with ictal duration and postictal suppression index. For both outcomes, multivariate models which included all variables resulted in the best fit, reflecting the complex influences of a variety of factors on the ictal response. These results are an important step forward in elucidating patterns in retrospective ECT clinical data which may lead to new clinical knowledge of modifiable factors to optimize ECT treatment outcomes.

5.
Clin Pharmacol Ther ; 105(6): 1338-1344, 2019 06.
Article in English | MEDLINE | ID: mdl-30499100

ABSTRACT

The identification in a patient of 1 of the 50 variants in the RYR1 or CACNA1S genes reviewed here should lead to a presumption of malignant hyperthermia susceptibility (MHS). MHS can lead to life-threatening reactions to potent volatile anesthetic agents or succinylcholine. We summarize evidence from the literature supporting this association and provide therapeutic recommendations for the use of these agents in patients with these RYR1 or CACNA1S variants (updates at https://cpicpgx.org/guidelines and www.pharmgkb.org).


Subject(s)
Anesthetics, Inhalation/adverse effects , Calcium Channels, L-Type/genetics , Pharmacogenetics/standards , Practice Guidelines as Topic/standards , Ryanodine Receptor Calcium Release Channel/genetics , Succinylcholine/adverse effects , Anesthetics, Inhalation/administration & dosage , Genotype , Humans , Malignant Hyperthermia/etiology , Malignant Hyperthermia/genetics , Neuromuscular Depolarizing Agents/administration & dosage , Pharmacogenetics/methods , Succinylcholine/administration & dosage , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...