Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 934: 172819, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38679106

ABSTRACT

Plastic pollution in the marine realm is a severe environmental problem. Nevertheless, plastic may also serve as a potential carbon and energy source for microbes, yet the contribution of marine microbes, especially marine fungi to plastic degradation is not well constrained. We isolated the fungus Parengyodontium album from floating plastic debris in the North Pacific Subtropical Gyre and measured fungal-mediated mineralization rates (conversion to CO2) of polyethylene (PE) by applying stable isotope probing assays with 13C-PE over 9 days of incubation. When the PE was pretreated with UV light, the biodegradation rate of the initially added PE was 0.044 %/day. Furthermore, we traced the incorporation of PE-derived 13C carbon into P. album biomass using nanoSIMS and fatty acid analysis. Despite the high mineralization rate of the UV-treated 13C-PE, incorporation of PE-derived 13C into fungal cells was minor, and 13C incorporation was not detectable for the non-treated PE. Together, our results reveal the potential of P. album to degrade PE in the marine environment and to mineralize it to CO2. However, the initial photodegradation of PE is crucial for P. album to metabolize the PE-derived carbon.


Subject(s)
Biodegradation, Environmental , Polyethylene , Polyethylene/metabolism , Water Pollutants, Chemical/metabolism , Polyporales/metabolism
2.
Sci Rep ; 9(1): 3598, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30837621

ABSTRACT

Trace and minor elements incorporated in foraminiferal shells are among the most used proxies for reconstructing past environmental conditions. A prominent issue concerning these proxies is that the inter-specimen variability in element composition is often considerably larger than the variability associated with the environmental conditions for which the proxy is used. Within a shell of an individual specimen the trace and minor elements are distributed in the form of bands of higher and lower concentrations. It has been hypothesized that differences in specimen-specific element banding patterns cause the inter-specimen and inter-species variability observed in average element composition, thereby reducing the reliability of proxies. To test this hypothesis, we compared spatial distributions of Mg, Na, Sr, K, S, P and N within chamber walls of two benthic foraminiferal species (Amphistegina lessonii and Ammonia tepida) with largely different average Mg content. For both species the selected specimens were grown at different temperatures and salinities to additionally assess how these parameters influence the element concentrations within the shell wall. Our results show that Mg, Na, Sr and K are co-located within shells, and occur in bands that coincide with organic linings but extend further into the calcite lamella. Changes in temperature or salinity modulate the element-banding pattern as a whole, with peak and trough heights co-varying rather than independently affected by these two environmental parameters. This means that independent changes in peak or trough height do not explain differences in average El/Ca between specimens. These results are used to evaluate and synthesize models of underlying mechanisms responsible for trace and minor element partitioning during calcification in foraminifera.


Subject(s)
Calcification, Physiologic , Foraminifera/classification , Foraminifera/physiology , Geologic Sediments/analysis , Seawater/analysis , Trace Elements/analysis , Water Pollutants, Chemical/analysis , Biodiversity , Environmental Monitoring
3.
Appl Opt ; 39(22): 3968-77, 2000 Aug 01.
Article in English | MEDLINE | ID: mdl-18349977

ABSTRACT

A rigorous theory of radiation from dipoles embedded inside an arbitrary multilayer system is presented. In particular, we derive explicit expressions for the angular distribution of the electromagnetic field and the intensity radiated by the dipole into the surrounding media. Under the assumptions of mutual incoherence of the dipole radiation the calculations are extended to a layer of radiating dipoles. Special configurations corresponding to (i) a single dipole near a dielectric interface, (ii) a dipole layer surrounded by semi-infinite dielectric media, and (iii) a dipole layer placed on top of a waveguide layer are discussed in detail. This theoretical analysis has important consequences for the optimization of optical chemical sensors and biosensors that are based on fluorescence emission.

SELECTION OF CITATIONS
SEARCH DETAIL
...