Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 10(9)2021 08 25.
Article in English | MEDLINE | ID: mdl-34571845

ABSTRACT

Knee osteoarthritis (OA) is one of the most prevalent chronic conditions affecting the adult population. OA is no longer thought to come from a purely biomechanical origin but rather one that has been increasingly recognized to include a persistent low-grade inflammatory component. Intra-articular corticosteroid injections (IACSI) have become a widely used method for treating pain in patients with OA as an effective symptomatic treatment. However, as the disease progresses, IACSI become ineffective. FKBP51 is a regulatory protein of the glucocorticoid receptor function and have been shown to be dysregulated in several pathological scenario's including chronic inflammation. Despite of these facts, to our knowledge, there are no previous studies of the expression and possible role of FKBP51 in OA. We investigated by double and triple immunofluorescence confocal microscopy the cellular and subcellular expression of FKBP51 and its relations with inflammation factors in osteoarthritic knee joint tissues: specifically, in the tibial plateau knee cartilage, Hoffa's fat pad and suprapatellar synovial tissue of the knee. Our results show co-expression of FKBP51 with TNF-α, IL-6, CD31 and CD34 in OA chondrocytes, synovial membrane cells and adipocytes in Hoffa's fat pad. FKBP51 is also abundant in nerve fibers within the fat pad. Co-expression of FKBP51 protein with these markers may be indicative of its contribution to inflammatory processes and associated chronic pain in OA.


Subject(s)
Inflammation/metabolism , Osteoarthritis, Knee/metabolism , Tacrolimus Binding Proteins/metabolism , Adipocytes/metabolism , Aged , Aged, 80 and over , Biomarkers/metabolism , Chondrocytes/metabolism , Female , Humans , Knee Joint/metabolism , Magnetic Resonance Imaging/methods , Male , Middle Aged , Receptors, Glucocorticoid/metabolism
2.
Methods ; 99: 69-80, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26384579

ABSTRACT

Musculoskeletal disorders represent a major cause of disability and morbidity globally and result in enormous costs for health and social care systems. Development of cell-based therapies is rapidly proliferating in a number of disease areas, including musculoskeletal disorders. Novel biological therapies that can effectively treat joint and spine degeneration are high priorities in regenerative medicine. Mesenchymal stem cells (MSCs) isolated from bone marrow (BM-MSCs), adipose tissue (AD-MSCs) and umbilical cord (UC-MSCs) show considerable promise for use in cartilage and intervertebral disc (IVD) repair. This review article focuses on stem cell-based therapeutics for cartilage and IVD repair in the context of the rising global burden of musculoskeletal disorders. We discuss the biology MSCs and chondroprogenitor cells and specifically focus on umbilical cord/Wharton's jelly derived MSCs and examine their potential for regenerative applications. We also summarize key components of the molecular machinery and signaling pathways responsible for the control of chondrogenesis and explore biomimetic scaffolds and biomaterials for articular cartilage and IVD regeneration. This review explores the exciting opportunities afforded by MSCs and discusses the challenges associated with cartilage and IVD repair and regeneration. There are still many technical challenges associated with isolating, expanding, differentiating, and pre-conditioning MSCs for subsequent implantation into degenerate joints and the spine. However, the prospect of combining biomaterials and cell-based therapies that incorporate chondrocytes, chondroprogenitors and MSCs leads to the optimistic view that interdisciplinary approaches will lead to significant breakthroughs in regenerating musculoskeletal tissues, such as the joint and the spine in the near future.


Subject(s)
Cartilage, Articular/physiology , Intervertebral Disc/physiology , Mesenchymal Stem Cells/physiology , Animals , Humans , Mesenchymal Stem Cell Transplantation , Regeneration , Regenerative Medicine , Signal Transduction , Tissue Engineering , Wharton Jelly/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...