Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38851567

ABSTRACT

The aim of this study was to evaluate the effects of different anti-mycotoxin feed additives on the concentration of mycotoxins in milk, urine, and blood plasma of dairy cows fed artificially multi-mycotoxin-contaminated diets. Secondarily, performance, total-tract apparent digestibility of nutrients, and blood parameters were evaluated. Twelve multiparous cows (165 ± 45 d in milk, 557 ± 49 kg body weight, and 32.1 ± 4.57 kg/d milk yield at the start of the experiment) were blocked according to parity, milk yield, and days in milk and used in a 4 × 4 Latin square design experiment with 21-d periods, where the last 7 d were used for sampling and data analysis. Treatments were: 1) Mycotoxin group (MTX), basal diet (BD) without anti-mycotoxin feed additives; 2) Hydrated sodium calcium aluminosilicate (HSCA), HSCA added to the BD at 25g/cow/d; 3) Mycotoxin deactivator 15 (MD15), MD (Mycofix® Plus, dsm-firmenich) added to the BD at 15 g/cow/d; and 4) Mycotoxin deactivator 30 (MD30), MD added to the BD at 30 g/cow/d. Cows from all treatments were challenged with a blend of mycotoxins containing 404 µg aflatoxins B1 (AFB1), 5,025 µg deoxynivalenol (DON), 8,046 µg fumonisins (FUM), 195 µg T2 toxin (T2), and 2,034 µg of zearalenone (ZEN) added daily to the BD during the last 7 d of each period. Neither performance (milk yield and composition) nor nutrient digestibility was affected by treatments. All additives reduced aflatoxin M1 (AFM1) concentration in milk, whereas MD15 and MD30 group had lower excretion of AFM1 in milk than HSCA. DON, FUM, T2, or ZEN were not detected in milk of MD15 and MD30. Concentrations in milk of DON, FUM, T2, and ZEN were similar between MTX and HSCA. Except for AFM1, none of the analyzed mycotoxins were detected in urine of MD30 group. Comparing HSCA to MD treatments, the concentration of AFM1 was greater for HSCA, whereas MD30 was more efficient at reducing AFM1 in urine than MD15. AFM1, DON, FUM, and ZEN were not detected in the plasma of cows fed MD30, and DON was also not detected in MD15 group. Plasma concentration of FUM was lower for MD15, similar plasma FUM concentration was reported for HSCA and MTX. Plasma concentration of ZEN was lower for MD15 than MTX and HSCA. Serum concentrations of haptoglobin and hepatic enzymes were not affected by treatments. Blood concentration of sodium was lower in HSCA compared with MD15 and MD30 groups. In conclusion, the mycotoxin deactivator proved to be effective in reducing the secretion of mycotoxins in milk, urine, and blood plasma, regardless of the dosage. This reduction was achieved without adverse effects on milk production or total-tract digestibility in cows fed multi-mycotoxin-contaminated diets over a short-term period. Greater reductions in mycotoxin secretion were observed with full dose of MD.

2.
J Dairy Sci ; 107(7): 4495-4508, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38369113

ABSTRACT

This study was conducted to evaluate the effects of live or autolyzed yeast supplementation on dairy cow performance and ruminal fermentation. Two experiments were conducted to evaluate performance, feed sorting, total-tract apparent digestibility of nutrients, purine derivatives excretion, N utilization, ruminal fermentation, and the abundance of specific bacterial groups in the rumen. In experiment 1, 39 Holstein cows (171 ± 40 DIM and 32.6 ± 5.4 kg/d milk yield) were blocked according to parity, DIM, and milk yield and randomly assigned to the following treatments: control (CON); autolyzed yeast fed at 0.625 g/kg DM (AY; Levabon, DSM-Firmenich); or live yeast fed at 0.125 g/kg DM (LY; Vistacell, AB Vista). Cows were submitted to a 2-wk adaptation period followed by a 9-wk trial. In experiment 2, 8 ruminal cannulated Holstein cows (28.4 ± 4.0 kg/d milk yield and 216 ± 30 DIM), of which 4 were multiparous and 4 were primiparous, were blocked according to parity and enrolled into a 4 × 4 Latin square experiment with 21-d periods (the last 7 d for sampling). Cows within blocks were randomly assigned to treatment sequences: control (CON), LY (using the same product and dietary concentration as described in experiment 1), AY, or autolyzed yeast fed at 0.834 g/kg DM (AY2). In experiments 1 and 2, nutrient intake and total-tract apparent digestibility were not affected by treatments. Sorting for long feed particles (>19 mm) tended to be greater in cows fed yeast supplements than CON in experiment 1. Efficiency of N conversion into milk N was increased when feeding yeast supplements in experiment 1, and 3.5% FCM yield tended to be greater in cows fed yeast supplements than CON. Feed efficiency was increased when yeast supplements were fed to cows in relation to CON in experiment 1. In experiment 2, yield of FCM and fat were greater in cows fed yeast supplements compared with CON. Uric acid concentration and output in urine were increased when feeding yeast supplements when compared with CON. Neither ruminal pH nor total VFA were influenced by treatments. The current study did not reveal treatment differences in ruminal abundance of Anaerovibrio lipolytica, the genus Butyrivibrio, Fibrobacter succinogenes, Butyrivibrio proteoclasticus, or Streptococcus bovis. Yeast supplementation can increase feed efficiency without affecting nutrient intake and digestibility, ruminal VFA concentration, or ruminal abundance of specific bacterial groups. Supplementing live or autolyzed yeast, regardless of the dose, resulted in similar performance.


Subject(s)
Animal Feed , Diet , Dietary Supplements , Digestion , Fermentation , Lactation , Milk , Rumen , Animals , Cattle , Female , Rumen/metabolism , Diet/veterinary , Milk/chemistry , Milk/metabolism , Yeasts , Nutrients/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...