Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sports Biomech ; : 1-14, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747522

ABSTRACT

Anterior cruciate ligament (ACL) injuries in sports often occur with non-contact mechanisms, such as landing and cutting. Previous studies explored the ACL injury biomechanical risk factors through drop-jumps combined with secondary jumps. This study aimed to investigate the effect of the secondary jump direction on first landing kinematic temporal series. Fifty-seven participants (29 males, 28 females) performed three single-leg drop-jumps followed by secondary jumps in vertical (single-planar), 45°-medial and 45°-lateral direction (multi-planar). Lower limb and trunk landing kinematics was recorded using a 9-camera motion capture system and analysed with a One-way ANOVA through Statistical Parametric Mapping (SPM), from initial contact to maximum knee flexion. All variables were affected by the secondary jump direction, except trunk rotation. In sagittal plane, kinematic main differences were found between single- and multi-planar tasks. The latter elicited higher trunk, hip, and knee flexion. Frontal plane kinematics was more influenced by medio-lateral components of secondary jumps. Our results could underline how a single task may be insufficient for ACL injury risk assessment. Single- and multi-planar tasks including a secondary jump should be considered for more comprehensive evaluations in prevention and rehabilitation programs, but caution should be used when comparing results of studies adopting different tasks.

2.
J Sports Med Phys Fitness ; 64(9): 917-924, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38602036

ABSTRACT

BACKGROUND: Non-contact anterior cruciate ligament injuries are common in soccer and volleyball, occurring during changes of direction and landings. This study aimed to investigate kinematic differences between soccer and volleyball players in single-planar and multiplanar landing tasks, simulating sport-specific injury mechanisms. Since the anterior cruciate ligament injury rate in soccer is higher than in volleyball, we hypothesized that volleyball players would adopt safer landing strategies, especially in single-planar landing tasks. METHODS: Twenty-two soccer and 19 volleyball players performed single-leg drop landing, drop jump in vertical, 45°-medial and 45°-lateral directions. Box height and jump length were adapted to the subject's height and performance level, respectively. A 9-camera motion capture system provided lower limb kinematics. Two mixed multivariate analyses of covariance (sport, task, sex as covariate) were used to compare soccer and volleyball players' initial contact and peak kinematics (α=0.05). RESULTS: Task had significant effects on lower limb initial contact and peak angles, as expected. Sport and task × sport interaction had no significant effects on kinematics. CONCLUSIONS: Soccer and volleyball players' landing strategies were thus similar in each task, in opposition to initial hypotheses. We might speculate that the higher anterior cruciate ligament injury rate in soccer may be more related to non-predictable factors than the isolated landing kinematics.


Subject(s)
Anterior Cruciate Ligament Injuries , Soccer , Volleyball , Humans , Volleyball/injuries , Volleyball/physiology , Soccer/injuries , Soccer/physiology , Anterior Cruciate Ligament Injuries/physiopathology , Biomechanical Phenomena , Male , Female , Young Adult , Adult , Athletic Injuries/prevention & control , Athletic Injuries/physiopathology , Athletic Injuries/epidemiology , Lower Extremity/physiology , Lower Extremity/injuries
SELECTION OF CITATIONS
SEARCH DETAIL