Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
2.
Mol Cell Endocrinol ; 370(1-2): 87-95, 2013 May 06.
Article in English | MEDLINE | ID: mdl-23462193

ABSTRACT

Glucose transporter GLUT4 protein, codified by Slc2a4 gene plays a key role in glycemic homeostasis. Insulin resistance, as in obesity, has been associated to inflammatory state, in which decreased GLUT4 is a feature. Inflammatory NF-κB transcriptional factor has been proposed as a repressor of Slc2a4; although, the binding site(s) in Slc2a4 promoter and the direct repressor effect have never been reported yet. A motif-based sequence analysis of mouse Slc2a4 promoter revealed two putative κB sites located inside -83/-62 and -134/-113 bp. Eletrophoretic mobility assay showed that p50 and p65 NF-κB subunits bind to both putative κB sites. Chromatin immunoprecipitation assay using genomic DNA from adipocytes confirmed p50- and p65-binding to Slc2a4 promoter. Moreover, transfection experiments revealed that NF-κB binds to the -134/-113bp region of the mouse Slc2a4 gene promoter, inhibiting the Slc2a4 gene transcription. The current findings demonstrate the existence of two κB sites in Slc2a4 gene promote, and that NF-κB has a direct repressor effect upon the Slc2a4 gene, providing an important link between insulin resistance and inflammation.


Subject(s)
Glucose Transporter Type 4/genetics , NF-kappa B p50 Subunit/metabolism , NF-kappa B/metabolism , Promoter Regions, Genetic , Transcription Factor RelA/metabolism , 3T3 Cells , Animals , Base Sequence , Binding Sites , Cell Line , Chromatin Immunoprecipitation , DNA-Binding Proteins/metabolism , Glucose Transporter Type 4/metabolism , Inflammation/genetics , Insulin Resistance/genetics , Mice , Obesity/genetics , Rats , Sequence Analysis, DNA , Transcription, Genetic
3.
J Mol Endocrinol ; 49(2): 97-106, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22735681

ABSTRACT

Evidences have suggested that the endocannabinoid system is overactive in obesity, resulting in enhanced endocannabinoid levels in both circulation and visceral adipose tissue. The blockade of cannabinoid receptor type 1 (CB1) has been proposed for the treatment of obesity. Besides loss of body weight, CB1 antagonism improves insulin sensitivity, in which the glucose transporter type 4 (GLUT4) plays a key role. The aim of this study was to investigate the modulation of GLUT4-encoded gene (Slc2a4 gene) expression by CB1 receptor. For this, 3T3-L1 adipocytes were incubated in the presence of a highly selective CB1 receptor agonist (1 µM arachidonyl-2'-chloroethylamide) and/or a CB1 receptor antagonist/inverse agonist (0.1, 0.5, or 1 µM AM251, 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide). After acute (2 and 4 h) and chronic (24 h) treatments, cells were harvested to evaluate: i) Slc2a4, Cnr1 (CB1 receptor-encoded gene), and Srebf1 type a (SREBP-1a type-encoded gene) mRNAs (real-time PCR); ii) GLUT4 protein (western blotting); and iii) binding activity of nuclear factor (NF)-κB and sterol regulatory element-binding protein (SREBP)-1 specifically in the promoter of Slc2a4 gene (electrophoretic mobility shift assay). Results revealed that both acute and chronic CB1 receptor antagonism greatly increased (∼2.5-fold) Slc2a4 mRNA and protein content. Additionally, CB1-induced upregulation of Slc2a4 was accompanied by decreased binding activity of NF-κB at 2 and 24 h, and by increased binding activity of the SREBP-1 at 24 h. In conclusion, these findings reveal that the blockade of CB1 receptor markedly increases Slc2a4/GLUT4 expression in adipocytes, a feature that involves NF-κB and SREBP-1 transcriptional regulation.


Subject(s)
Adipocytes/drug effects , Glucose Transporter Type 4/genetics , NF-kappa B/metabolism , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , 3T3-L1 Cells , Adipocytes/metabolism , Animals , Arachidonic Acids/pharmacology , Gene Expression Regulation/drug effects , Glucose Transporter Type 4/metabolism , Mice , Piperidines/pharmacology , Promoter Regions, Genetic , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB1/agonists , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...