Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 16(5)2024 05 16.
Article in English | MEDLINE | ID: mdl-38793677

ABSTRACT

Avian reovirus (ARV) infection can cause significant losses to the poultry industry. Disease control has traditionally been attempted mainly through vaccination. However, the increase in clinical outbreaks in the last decades demonstrated the poor effectiveness of current vaccination approaches. The present study reconstructs the evolution and molecular epidemiology of different ARV genotypes using a phylodynamic approach, benefiting from a collection of more than one thousand sigma C (σC) sequences sampled over time at a worldwide level. ARVs' origin was estimated to occur several centuries ago, largely predating the first clinical reports. The origins of all genotypes were inferred at least one century ago, and their emergence and rise reflect the intensification of the poultry industry. The introduction of vaccinations had only limited and transitory effects on viral circulation and further expansion was observed, particularly after the 1990s, likely because of the limited immunity and the suboptimal and patchy vaccination application. In parallel, strong selective pressures acted with different strengths and directionalities among genotypes, leading to the emergence of new variants. While preventing the spread of new variants with different phenotypic features would be pivotal, a phylogeographic analysis revealed an intricate network of viral migrations occurring even over long distances and reflecting well-established socio-economic relationships.


Subject(s)
Genotype , Orthoreovirus, Avian , Phylogeny , Phylogeography , Poultry Diseases , Reoviridae Infections , Orthoreovirus, Avian/genetics , Orthoreovirus, Avian/classification , Animals , Reoviridae Infections/veterinary , Reoviridae Infections/virology , Reoviridae Infections/epidemiology , Poultry Diseases/virology , Poultry Diseases/epidemiology , Evolution, Molecular , Molecular Epidemiology , Poultry/virology , Genetic Variation
2.
Viruses ; 16(3)2024 03 20.
Article in English | MEDLINE | ID: mdl-38543846

ABSTRACT

The GI-19 lineage of infectious bronchitis virus (IBV) has emerged as one of the most impactful, particularly in the "Old World". Originating in China several decades ago, it has consistently spread and evolved, often forming independent clades in various areas and countries, each with distinct production systems and control strategies. This study leverages this scenario to explore how different environments may influence virus evolution. Through the analysis of the complete S1 sequence, four datasets were identified, comprising strains of monophyletic clades circulating in different continents or countries (e.g., Asia vs. Europe and China vs. Thailand), indicative of single introduction events and independent evolution. The population dynamics and evolutionary rate variation over time, as well as the presence and intensity of selective pressures, were estimated and compared across these datasets. Since the lineage origin (approximately in the mid-20th century), a more persistent and stable viral population was estimated in Asia and China, while in Europe and Thailand, a sharp increase following the introduction (i.e., 2005 and 2007, respectively) of GI-19 was observed, succeeded by a rapid decline. Although a greater number of sites on the S1 subunit were under diversifying selection in the Asian and Chinese datasets, more focused and stronger pressures were evident in both the European (positions 2, 52, 54, 222, and 379 and Thai (i.e., positions 10, 12, 32, 56, 62, 64, 65, 78, 95, 96, 119, 128, 140, 182, 292, 304, 320, and 323) strains, likely reflecting a more intense and uniform application of vaccines in these regions. This evidence, along with the analysis of control strategies implemented in different areas, suggests a strong link between effective, systematic vaccine implementation and infection control. However, while the overall evolutionary rate was estimated at approximately 10-3 to 10-4, a significant inverse correlation was found between viral population size and the rate of viral evolution over time. Therefore, despite the stronger selective pressure imposed by vaccination, effectively constraining the former through adequate control strategies can efficiently prevent viral evolution and the emergence of vaccine-escaping variants.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Vaccines , Animals , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Infectious bronchitis virus/genetics , Phylogeny , Thailand/epidemiology
3.
Avian Pathol ; 53(1): 56-67, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37823857

ABSTRACT

RESEARCH HIGHLIGHTS: Different field IBDVs were found to circulate in the Near and Middle East.Multiple atypical genotypes (A3B1, A4B1, A6B1) were found to circulate extensively.Traditional very virulent IBDVs (A3B2) were a minority of the detected strains.Viral exchanges can be hypothesized between the region and different continents.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Poultry Diseases , Animals , Chickens/genetics , Infectious bursal disease virus/genetics , Molecular Epidemiology , Indian Ocean , Birnaviridae Infections/epidemiology , Birnaviridae Infections/veterinary , Phylogeny , Middle East/epidemiology , Viral Structural Proteins/genetics
4.
Viruses ; 15(12)2023 12 07.
Article in English | MEDLINE | ID: mdl-38140629

ABSTRACT

Infectious bursal disease (IBD) is an immunosuppressive disease causing significant damage to the poultry industry worldwide. Its etiological agent is infectious bursal disease virus (IBDV), a highly resistant RNA virus whose genetic variability considerably affects disease manifestation, diagnosis and control, primarily pursued by vaccination. In Egypt, very virulent strains (genotype A3B2), responsible for typical IBD signs and lesions and high mortality, have historically prevailed. The present molecular survey, however, suggests that a major epidemiological shift might be occurring in the country. Out of twenty-four samples collected in twelve governorates in 2022-2023, seven tested positive for IBDV. Two of them were A3B2 strains related to other very virulent Egyptian isolates, whereas the remaining five were novel variant IBDVs (A2dB1b), reported for the first time outside of Eastern and Southern Asia. This emerging genotype spawned a large-scale epidemic in China during the 2010s, characterized by subclinical IBD with severe bursal atrophy and immunosuppression. Its spread to Egypt is even more alarming considering that, contrary to circulating IBDVs, the protection conferred by available commercial vaccines appears suboptimal. These findings are therefore crucial for guiding monitoring and control efforts and helping to track the spread of novel variant IBDVs, possibly limiting their impact.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Poultry Diseases , Animals , Egypt/epidemiology , Chickens , Poultry , Birnaviridae Infections/epidemiology , Birnaviridae Infections/veterinary , Genotype , Phylogeny
5.
Front Microbiol ; 14: 1234393, 2023.
Article in English | MEDLINE | ID: mdl-37583516

ABSTRACT

Introduction: Porcine circovirus 3 (PCV-3) was firstly reported in 2017. Although evidence of its pathogenic role has been provided, its clinical relevance seems lower than Porcine circovirus 2 (PCV-2), as well as its evolutionary rate. Different studies have reported a high PCV-3 prevalence in wild boars, sometimes higher than the one observed in commercial pigs. Nevertheless, to date, few studies have objectively investigated the relationships between these populations when inhabiting the same area. Moreover, the role of small-scale, backyard pig production in PCV-3 epidemiology is still obscure. Methods: The present study investigated PCV-3 occurrence in 216 samples collected from the same area of Northern Italy from commercial and rural pigs, and wild boars. PCV-3 presence was tested by qPCR and complete genome or ORF2 sequences were obtained when possible and analysed using a combination of statistical, phylogenetic and phylodynamic approaches. Results: A higher infection risk in wild boars and rural pigs compared to the commercial ones was demonstrated. The phylodynamic analysis confirmed a larger viral population size in wild and rural populations and estimated a preferential viral flow from these populations to commercial pigs. A significant flow from wild to rural animals was also proven. The analysis of the Italian sequences and the comparison with a broader international reference dataset highlighted the circulation of a highly divergent clade in Italian rural pigs and wild boars only. Discussion: Overall, the present study results demonstrate the role of non-commercial pig populations in PCV-3 maintenance, epidemiology and evolution, which could represent a threat to intensive farming.

SELECTION OF CITATIONS
SEARCH DETAIL
...