Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Cell Fact ; 20(1): 40, 2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33557838

ABSTRACT

BACKGROUND: Microbial surfactants called biosurfactants, thanks to their high biodegradability, low toxicity and stability can be used not only in bioremediation and oil processing, but also in the food and cosmetic industries, and even in medicine. However, the high production costs of microbial surfactants and low efficiency limit their large-scale production. This requires optimization of management conditions, including the possibility of using waste as a carbon source, such as food processing by-products. This papers describes the production and characterization of the biosurfactant obtained from the endophytic bacterial strain Bacillus pumilus 2A grown on various by-products of food processing and its potential applications in supporting plant growth. Four different carbon and nitrogen sources, pH, inoculum concentration and temperature were optimized within Taguchi method. RESULTS: Optimization of bioprocess within Taguchi method and experimental analysis revealed that the optimal conditions for biosurfactant production were brewer's spent grain (5% w/v), ammonium nitrate (1% w/v), pH of 6, 5% of inoculum, and temperature at 30 °C, leading to 6.8 g/L of biosurfactant. Based on gas chromatography-mass spectrometry and Fourier transform infrared spectroscopy analysis produced biosurfactant was determined as glycolipid. Obtained biosurfactant has shown high and long term thermostability, surface tension of 47.7 mN/m, oil displacement of 8 cm and the emulsion index of 69.11%. The examined glycolipid, used in a concentration of 0.2% significantly enhanced growth of Phaseolus vulgaris L. (bean), Raphanus L. (radish), Beta vulgaris L. (beetroot). CONCLUSIONS: The endophytic Bacillus pumilus 2A produce glycolipid biosurfactant with high and long tem thermostability, what makes it useful for many purposes including food processing. The use of brewer's spent grain as the sole carbon source makes the production of biosurfactants profitable, and from an environmental point of view, it is an environmentally friendly way to remove food processing by products. Glycolipid produced by endophytic Bacillus pumilus 2A significantly improve growth of Phaseolus vulgaris L. (bean), Raphanus L. (radish), Beta vulgaris L. (beetroot). Obtained results provide new insight to the possible use of glycolipids as plant growth promoting agents.


Subject(s)
Bacillus pumilus , Beta vulgaris/growth & development , Endophytes , Phaseolus/growth & development , Raphanus/growth & development , Surface-Active Agents , Bacillus pumilus/chemistry , Bacillus pumilus/metabolism , Endophytes/chemistry , Endophytes/metabolism , Surface-Active Agents/isolation & purification , Surface-Active Agents/metabolism , Surface-Active Agents/pharmacology
2.
Bioresour Technol ; 245(Pt A): 394-400, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28898836

ABSTRACT

The effect of different ozonation conditions on straw from Secale cereale (rye straw) pretreatment has been investigated. Using the Taguchi method, this study analyzed the optimum conditions for pretreatment of rye straw by ozonation. After 60min of rye straw ozonation the concentration of reducing sugars (RS) and volatile fatty acid (VFA), chemical oxygen demand (COD) were 7.4, 32.3 and 11.7 times higher, respectively compared to samples raw rye straw. The most effective rye straw ozonation occurred while using the highest amount of the rye straw (15g) treated with lower ozone dose (100gO3/m3) in the longest period of time (60min). For this variant of experiment the increment of methane production was 291.71dm3CH4/kgVS. Moreover, co-digestion of sewage sludge with addition of 20% ozonated rye straw allowed to obtain 269.1dm3CH4/kgVS. The positive effect of ozone on changes in the rye straw structure has been confirmed by SEM and FTIR analysis.


Subject(s)
Ozone , Secale , Sewage , Anaerobiosis , Biological Oxygen Demand Analysis , Fatty Acids, Volatile , Methane
SELECTION OF CITATIONS
SEARCH DETAIL
...