Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 14(3): e11096, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38435011

ABSTRACT

Understanding dispersal is central to interpreting the effects of climate change, habitat loss and habitat fragmentation, and species invasions. Prior to dispersal, animals may gather information about the surrounding landscape via forays, or systematic, short-duration looping movements away from and back to the original location. Despite theory emphasizing that forays can be beneficial for dispersing organisms and that such behaviors are predicted to be common, relatively little is known about forays in wild populations. Theory predicts that individuals that use forays may delay dispersal and such behaviors should increase survival, yet empirical tests of these predictions remain scarce. We tested these predictions in a natural system using the critically endangered snail kite (Rostrhaumus sociabilis), a wetland-dependent raptor. We GPS tracked 104 snail kites from fledging through emigration from the natal site across their breeding range to understand the demographic consequences of movement. We found that forays were common (82.7% of individuals tracked), and natal habitat played an important role in the initiation, execution, and outcome of foray behavior. The effect of foraying on survival was indirect, where forayers emigrated later than non-forayers, and individuals that emigrated later had the highest survival. Poor hydrological conditions in the natal environment were especially important for eliciting forays. Finally, females responded more strongly to natal hydrology than males, making more forays and significantly longer, more distant trips. These results emphasize the fundamental role of natal habitat for determining behavioral patterns, strengthen links between individual movement decisions and their demographic consequences, and provide an important behavioral focal point for interpreting movement tracks that would not otherwise be captured by conventional movement models.

2.
Ecol Lett ; 22(10): 1680-1689, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31347244

ABSTRACT

Predicting connectivity, or how landscapes alter movement, is essential for understanding the scope for species persistence with environmental change. Although it is well known that movement is risky, connectivity modelling often conflates behavioural responses to the matrix through which animals disperse with mortality risk. We derive new connectivity models using random walk theory, based on the concept of spatial absorbing Markov chains. These models decompose the role of matrix on movement behaviour and mortality risk, can incorporate species distribution to predict the amount of flow, and provide both short- and long-term analytical solutions for multiple connectivity metrics. We validate the framework using data on movement of an insect herbivore in 15 experimental landscapes. Our results demonstrate that disentangling the roles of movement behaviour and mortality risk is fundamental to accurately interpreting landscape connectivity, and that spatial absorbing Markov chains provide a generalisable and powerful framework with which to do so.


Subject(s)
Animal Distribution , Ecosystem , Mortality , Movement , Animals , Markov Chains , Spatio-Temporal Analysis
3.
PLoS One ; 12(6): e0178318, 2017.
Article in English | MEDLINE | ID: mdl-28575078

ABSTRACT

During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra), in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m-35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level), the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance understanding of seabird sensing of the environment and serve as a baseline for anthropogenic based threats such as development, pollution, and commercial fisheries.


Subject(s)
Appetitive Behavior , Birds , Animals , Birds/physiology , Breeding , Caribbean Region , Ecosystem , Feeding Behavior , Female , Gulf of Mexico , Male , Nesting Behavior , Oceanography , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...