Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropharmacology ; 192: 108608, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33991565

ABSTRACT

An impairment of long-term synaptic plasticity is considered as a peculiar endophenotype of distinct forms of dystonia, a common, disabling movement disorder. Among the few therapeutic options, broad-spectrum antimuscarinic drugs are utilized, aimed at counteracting abnormal striatal acetylcholine-mediated transmission, which plays a crucial role in dystonia pathophysiology. We previously demonstrated a complete loss of long-term synaptic depression (LTD) at corticostriatal synapses in rodent models of two distinct forms of isolated dystonia, resulting from mutations in the TOR1A (DYT1), and GNAL (DYT25) genes. In addition to anticholinergic agents, the aberrant excitability of striatal cholinergic cells can be modulated by group I metabotropic glutamate receptor subtypes (mGlu1 and 5). Here, we tested the efficacy of the negative allosteric modulator (NAM) of metabotropic glutamate 5 (mGlu) receptor, dipraglurant (ADX48621) on striatal LTD. We show that, whereas acute treatment failed to rescue LTD, chronic dipraglurant rescued this form of synaptic plasticity both in DYT1 mice and GNAL rats. Our analysis of the pharmacokinetic profile of dipraglurant revealed a relatively short half-life, which led us to uncover a peculiar time-course of recovery based on the timing from last dipraglurant injection. Indeed, striatal spiny projection neurons (SPNs) recorded within 2 h from last administration showed full expression of synaptic plasticity, whilst the extent of recovery progressively diminished when SPNs were recorded 4-6 h after treatment. Our findings suggest that distinct dystonia genes may share common signaling pathway dysfunction. More importantly, they indicate that dipraglurant might be a potential novel therapeutic agent for this disabling disorder.


Subject(s)
Corpus Striatum/physiology , Dystonia/physiopathology , Excitatory Amino Acid Antagonists/pharmacology , Imidazoles/pharmacology , Long-Term Synaptic Depression/physiology , Pyridines/pharmacology , Receptor, Metabotropic Glutamate 5/physiology , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Corpus Striatum/drug effects , Dystonia/drug therapy , Dystonia/genetics , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Agonists/therapeutic use , Excitatory Amino Acid Antagonists/therapeutic use , Imidazoles/therapeutic use , Long-Term Synaptic Depression/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pyridines/therapeutic use , Rats , Rats, Sprague-Dawley , Receptor, Metabotropic Glutamate 5/agonists , Receptor, Metabotropic Glutamate 5/antagonists & inhibitors
2.
Curr Drug Metab ; 6(5): 413-54, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16248836

ABSTRACT

The inhibition of human cytochrome P450s (CYPs) is one of the most common mechanisms which can lead to drug-drug interactions. The inhibition of CYPs can be reversible (competitive or non-competitive) or irreversible. Irreversible inhibition usually derives from activation of a drug by CYPs into a reactive metabolite, which tightly binds to the enzyme active site, leading to a long lasting inactivation. This process is called "mechanism based inhibition" or "suicide inhibition". The irreversible inactivation usually implies the formation of a covalent bond between the metabolite and the enzyme, which can lead to hapten formation and can in some cases trigger an autoimmune-response. For these reasons it is of utmost importance to study the mechanism of the CYP inhibition of new potential drugs as early as possible during the drug discovery process. The literature on CYPs is vast and covers numerous aspects of their biology and biochemistry, however to our knowledge there is no general and systematic review focusing on mechanism-based inhibitors; we have reviewed the literature and compiled all the available data on chemical entities, which are known to be CYP suicide inhibitors. Each compound is reported together with its chemical structure, the CYP isoform and the parameters describing the inactivation. Literature references are reported together with their PMID (PubMed ID number) to allow a fast retrieval of the papers. This review offers a quick reference to help predict liabilities of new chemical entities without carrying out extensive in vitro work, and will hopefully help in designing safer drugs.


Subject(s)
Cytochrome P-450 Enzyme Inhibitors , Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme System/chemistry , Drug Interactions , Enzyme Inhibitors/chemistry , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/chemistry , Structure-Activity Relationship , Terminology as Topic
3.
Proc Natl Acad Sci U S A ; 97(9): 4938-43, 2000 Apr 25.
Article in English | MEDLINE | ID: mdl-10758169

ABSTRACT

The biochemical and behavioral effects of a nonpeptidic, selective, and brain-penetrant agonist at the ORL1 receptor are reported herein. This low molecular weight compound [(1S,3aS)-8- (2,3,3a,4,5, 6-hexahydro-1H-phenalen-1-yl)-1-phenyl-1,3,8-triaza- spiro[4. 5]decan-4-one] has high affinity for recombinant human ORL1 receptors and has 100-fold selectivity for ORL1 over other members of the opioid receptor family. It is a full agonist at these receptors and elicits dose-dependent anxiolytic-like effects in a set of validated models of distinct types of anxiety states in the rat (i.e., elevated plus-maze, fear-potentiated startle, and operant conflict). When given systemically, the compound has an efficacy and potency comparable to those of a benzodiazepine anxiolytic such as alprazolam or diazepam. However, this compound is differentiated from a classical benzodiazepine anxiolytic by a lack of efficient anti-panic-like activity, absence of anticonvulsant properties, and lack of effects on motor performance and cognitive function at anxiolytic doses (0.3 to 3 mg/kg i.p.). No significant change in intracranial self-stimulation performance and pain reactivity was observed in this dose range. Higher doses of this compound (>/=10 mg/kg) induced disruption in rat behavior. These data confirm the notable anxiolytic-like effects observed at low doses with the orphanin FQ/nociceptin neuropeptide given locally into the brain and support a role for orphanin FQ/nociceptin in adaptive behavioral fear responses to stress.


Subject(s)
Anti-Anxiety Agents/pharmacology , Fear/physiology , Imidazoles/pharmacology , Maze Learning/drug effects , Receptors, Opioid/agonists , Reflex, Startle/drug effects , Spiro Compounds/pharmacology , Acoustic Stimulation , Alprazolam/pharmacology , Animals , Cognition/drug effects , Cognition/physiology , Conflict, Psychological , Diazepam/pharmacology , Dose-Response Relationship, Drug , Electroshock , Epilepsy/chemically induced , Epilepsy/physiopathology , Fear/drug effects , Humans , Male , Maze Learning/physiology , Pain/physiopathology , Pentylenetetrazole , Rats , Rats, Sprague-Dawley , Receptors, Opioid/physiology , Recombinant Proteins/metabolism , Seizures/chemically induced , Seizures/physiopathology , Self Stimulation/drug effects , Nociceptin Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...