Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 142(43): 18293-18298, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33078947

ABSTRACT

Structurally well-defined graphene nanoribbons (GNRs) have emerged as highly promising materials for the next-generation nanoelectronics. The electronic properties of GNRs critically depend on their edge topologies. Here, we demonstrate the efficient synthesis of a curved GNR (cGNR) with a combined cove, zigzag, and armchair edge structure, through bottom-up synthesis. The curvature of the cGNR is elucidated by the corresponding model compounds tetrabenzo[a,cd,j,lm]perylene (1) and diphenanthrene-fused tetrabenzo[a,cd,j,lm]perylene (2), the structures of which are unambiguously confirmed by the X-ray single-crystal analysis. The resultant multi-edged cGNR exhibits a well-resolved absorption at the near-infrared (NIR) region with a maximum peak at 850 nm, corresponding to a narrow optical energy gap of ∼1.22 eV. Employing THz spectroscopy, we disclose a long scattering time of ∼60 fs, corresponding to a record intrinsic charge carrier mobility of ∼600 cm2 V-1 s-1 for photogenerated charge carriers in cGNR.

2.
J Phys Chem Lett ; 8(22): 5462-5471, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29064705

ABSTRACT

We present an experimental study on the near-field light-matter interaction by tip-enhanced Raman scattering (TERS) with polarized light in three different materials: germanium-doped gallium nitride (GaN), graphene, and carbon nanotubes. We investigate the dependence of the TERS signal on the incoming light polarization and on the sample carrier concentration, as well as the Raman selection rules in the near-field. We explain the experimental data with a tentative quantum mechanical interpretation, which takes into account the role of plasmon polaritons, and the associated evanescent field. The driving force for the breakdown of the classical Raman selection rules in TERS is caused by photon tunneling through the perturbation of the evanescent field, with the consequent polariton annihilation. Predictions based on this quantum mechanical approach are in good agreement with the experimental data, which are shown to be independent of incoming light polarization, leading to new Raman selection rules for TERS.

3.
Nano Lett ; 15(2): 857-63, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25539448

ABSTRACT

We have used elastomeric stamps with periodically varying adhesive properties to introduce structure and print folded graphene films. The structure of the induced folds is investigated with scanning probe techniques, high-resolution electron-microscopy, and tip-enhanced Raman spectroscopy. Furthermore, a finite element model is developed to show the fold formation process. Terahertz spectroscopy reveals induced anisotropy of carrier mobility along, and perpendicular to, the graphene folds. Graphene fold printing is a new technique which allows for significant modification of the properties of 2D materials without damaging or chemically modifying them.

SELECTION OF CITATIONS
SEARCH DETAIL
...