Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(19): 12991-13005, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37124014

ABSTRACT

Male sexual dysfunctions such as infertility and impotence are recognized as the consequences of diabetes. Salazinic acid (Sa) is a depsidone found in lichen genera of Lobaria, Parmelia, and Usnea, which has prominent free radical and α-glucosidase inhibitory actions. The present study establishes the beneficial role of salazinic acid (Sa) to combat the deleterious effects of streptozotocin-induced diabetes on the male reproductive system of rats. In a dose-dependent manner, Sa significantly restored the reproductive organs weight, sperm characteristics, and testicular histoarchitecture in diabetic rats. Further, a significant recovery of insulin, follicle-stimulating hormone, luteinizing hormone and testosterone levels in serum was recorded in Sa-treated diabetic rats. The malondialdehyde levels were significantly lowered, and the activities of glutathione, superoxide dismutase, glutathione peroxidase and catalase, markedly elevated in the blood serum, as well as testicular tissue after Sa-supplementation. Sa also suppressed the protein expression levels of tumor necrosis factor-α in serum. The high dose of Sa showed significant improvement in glycemia and testicular protection, similar to sildenafil citrate. Moreover, the docking results showed that both Sa and sildenafil have a high affinity toward the target protein, PDE5 with binding affinity values found to be -9.5 and -9.2 kcal mol-1, respectively. Molecularly, both Sa and sildenafil share similar hydrogen bonding patterns with PDE5. Hence, our study clearly showed the protective role of Sa against diabetic-induced spermatogenic dysfunction in rats, possibly by competing with cGMP to bind to the catalytic domain of PDE5 and thereby controlling the oxidative impairment of testes.

2.
PLoS One ; 17(7): e0269983, 2022.
Article in English | MEDLINE | ID: mdl-35776756

ABSTRACT

Tetramethrin (Tm) is a commonly used pesticide that has been reported to exert estrogen-antagonistic effects selectively on female rats. The present study was undertaken to assess the protective role of lobaric acid (La) on estrous cycle in Tm-treated female Wistar rats. Female rats were exposed to Tm (50 mg/kg b.w/day) only or in combination with La at low (50 mg/kg b.w/day) or high (100 mg/kg b.w/day) dose for 30 days. The results showed that Tm altered the estrous cycle of female rats by decreasing the levels of luteinizing hormone, follicular-stimulating hormone, progesterone, estrone, and estradiol while increasing testosterone level. The morphology of vaginal smears of Tm-treated female rats showed the presence of abnormal cells and/or structures at different phases of estrus cycle. Strikingly, in (Tm + La)-treated rats, all the observed adverse effects of Tm on the hormonal parameters, cell morphology, and the length of each phase of estrous cycle were significantly diminished in a dose-dependent manner. The docking results showed that La competes with Tm for Gonadotropin-Releasing Hormone (GnRH) receptor, thereby reducing the toxicity of Tm but did not cancel the response of GnRH receptor completely. In conclusion, our results designated that La could be used as a potential candidate in the management of insecticide-induced alterations of the reproductive cycle of rodents.


Subject(s)
Estrous Cycle , Salicylates , Animals , Depsides , Estrous Cycle/physiology , Female , Lactones , Pyrethrins , Rats , Rats, Wistar , Salicylates/pharmacology
3.
Sci Rep ; 12(1): 9267, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35661799

ABSTRACT

Diterpenes are secondary metabolites that have attracted much attention due to their potential biological activities including anti-cancer potential. The aim of the current study is to assess the anticancer potential of the six known clerodane diterpenes (1-6) isolated from Polyalthia longifolia seeds and their underlying molecular mechanisms. These compounds were evaluated for their cytotoxicity in vitro by using MTT assays. The "two-phase model" with NDEA and PB ad libitum was used for induction of HCC and sorafenib was used as the standard drug. Prophylactic studies were carried out for compounds 4/6 at both low (5 mg/kg b.w) and high (10 mg/kg b.w) doses. Based on the MTT assay results, the two best compounds, 4 and 6, were selected for in vivo studies. The results showed that treatment with compound 4/6 significantly restored the changes in biochemical parameters and liver morphology observed in (NDEA + PB)-induced HCC rats. Additionally, the docking studies showed that compound 4/6 interacted with several key proteins such as MDM2, TNF-α, FAK, thereby inhibiting these proteins and reversing the negative impacts of NDEA. In conclusion, our results suggested that compounds 4 and 6 are potential therapeutic agents for HCC, mostly due to their ability to control typical cancer pathways.


Subject(s)
Carcinoma, Hepatocellular , Diterpenes, Clerodane , Diterpenes , Liver Neoplasms , Polyalthia , Animals , Carcinoma, Hepatocellular/drug therapy , Diterpenes/pharmacology , Diterpenes, Clerodane/chemistry , Diterpenes, Clerodane/pharmacology , Liver Neoplasms/drug therapy , Polyalthia/chemistry , Rats , Seeds/chemistry
4.
3 Biotech ; 12(4): 95, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35371903

ABSTRACT

The aim of the present study is to provide a scientific rationale for the folklore usage of Cladonia pyxidata (L.) Hoffm. in treating tuberculosis (Tb). Through bioassay-guided isolation, antimycobacterial metabolites were isolated from under-investigated lichen C. pyxidata and examined against M.t H37Ra and six MDR strains. Further, the cytotoxicity of all isolated metabolites was evaluated on THP-1 macrophages. Bioassay-guided isolation of acetone extract of C. pyxidata yielded four metabolites, namely usnic acid, atranorin, barbatic acid, and fumarprotocetraric acid. Among those, the MIC values of usnic acid and fumarprotocetraric acid showed more effective in inhibiting the growth of six MDR strains, compared to first-line drug rifampicin. In addition, the 50% inhibitory concentration values of these two compounds on THP-1 were found to be far higher than MIC values against tested Tb strains, indicating that THP-1 macrophages were not harmfully affected at concentrations that were effective against M.t and MDR strains. The results exposed the traditional use of C. pyxidata for treating Tb, and the key metabolites were found to be usnic acid and fumarprotocetraric acid. The current study lends the first evidence for the presence of antimycobacterial compounds in C. pyxidata. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03159-6.

5.
Nat Prod Res ; 35(23): 5420-5424, 2021 Dec.
Article in English | MEDLINE | ID: mdl-32498563

ABSTRACT

The antioxidant and antidiabetic effects of sekikaic acid (SA) were investigated using in vitro and in vivo study models. SA possessed good antioxidant activity as assessed through hydroxyl radicals (IC50 value = 41.5 µg/mL) and ferric ions assay (IC50 value = 42.0 µg/mL). SA exhibited stronger α-glucosidase and α-amylase inhibition than that of aldose-reductase and protein tyrosine phosphatase 1B. The hypoglycemic activity of SA caused significant reduction of plasma glucose levels in normal and glucose loaded rats. The anti-hyperglycemic activity of SA (2 mg/Kg body weight) was indicated by the reduction of blood glucose by 44.17 ± 3.78% in the third week in streptozotocin-induced diabetic rats. The hypolipidaemic action of SA was evident by the significant decrease in the levels of low-density lipoprotein, total cholesterol, and total glycerides. Histologically, the pancreas of the treated groups showed significant regeneration of the pancreatic ß-cells compared to diabetic control, possibly due to the inhibition of digestive enzymes.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Animals , Blood Glucose , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Plant Extracts , Rats , Streptozocin
6.
Sci Rep ; 10(1): 15965, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32994508

ABSTRACT

Natural metabolites with their specific bioactivities are being considered as a potential source of materials for pharmacological studies. In this study, we successfully isolated and identified five known clerodane diterpenes, namely 16-oxo-cleroda-3,13(14)E-dien-15-oic acid (1), 16-hydroxy-cleroda-3,13-dien-15-oic acid (2), 16-hydroxy-cleroda-4(18),13-dien-16,15-olide (3), 3α,16α-dihydroxy-cleroda-4(18),13(14)Z-dien-15,16-olide (4), and 16α-hydroxy-cleroda-3,13(14)Z-dien-15,16-olide (5) from the methanolic extract of seeds of Polyalthia longifolia. Initially, all the isolated metabolites were investigated for COX-1, COX-2, and 5-LOX inhibitory activities using the standard inhibitory kits. Of which, compounds 3, 4, and 5 exhibited to be potent COX-1, COX-2, and 5-LOX inhibitors with the IC50 values similar or lower to those of the reference drugs. To understand the underlying mechanism, these compounds were subjected to molecular docking on COX-1, COX-2, and 5-LOX proteins. Interestingly, the in silico study results were in high accordance with in vitro studies where compounds 3, 4, and 5 hits assumed interactions and binding pattern comparable to that of reference drugs (indomethacin and diclofenac), as a co-crystallized ligand explaining their remarkable dual (COX/LOX) inhibitor actions. Taken together, our findings demonstrated that compounds 3, 4, and 5 functioned as dual inhibitors of COX/5-LOX and can contribute to the development of novel, more effective anti-inflammatory drugs with minimal side-effects.


Subject(s)
Arachidonate 5-Lipoxygenase/metabolism , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Diterpenes, Clerodane/pharmacology , Polyalthia/chemistry , Arachidonate 5-Lipoxygenase/chemistry , Computer Simulation , Cyclooxygenase 1/chemistry , Cyclooxygenase 2/chemistry , Cyclooxygenase Inhibitors/chemistry , Cyclooxygenase Inhibitors/pharmacology , Diterpenes, Clerodane/chemistry , Humans , Lipoxygenase Inhibitors/chemistry , Lipoxygenase Inhibitors/pharmacology , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/pharmacology , Seeds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...