Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Plant Sci ; 317: 111190, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35193739

ABSTRACT

Phosphorylation of the α-subunit of eukaryotic initiation factor 2 (eIF2α) and subsequent inhibition of protein synthesis is a major survival response to different stresses in animal and yeast cells. However, the role of this regulatory mechanism in plants is not unambiguously established to date. Here we describe a slight reduction of polysome abundance in Nicotiana benthamiana after the transient expression of a cDNA, AteIF2α(S56D), encoding a phosphomimetic form of Arabidopsis thaliana eIF2α. In contrast, the expression of a cDNA, AteIF2α(S56A), that encodes a non-phosphorylatable form of AteIF2α caused slightly elevated polysome formation compared to the control. Recombinant AteIF2α(S56A) was detected in association with 40S ribosomal subunit-containing complexes and also in the polysomal fraction, while recombinant AteIF2α(S56D) was detected mainly in complex with 40S subunits. Intentional phosphorylation of TaeIF2α induced by L-histidinol in a wheat germ (Triticum aestivum) cell-free extract did not reduce the abundance of polysomes. Interestingly, the phosphorylated TaeIF2(αP) was not detected in the polysomal fraction, similar to AteIF2α(S56D) in the in vivo experiment. Using mRNAs with a 'Strepto-tag' in the 3' untranslated region, the 48S pre-initiation complexes isolated from histidinol-treated wheat germ extracts were shown to contain phosphorylated TaeIF2(αP). Thus, the phosphorylation of plant eIF2 does not greatly affect its ability to participate in the initiation of mRNA translation, in contrast to animals and yeast, in which eIF2α phosphorylation results in profound suppression of protein synthesis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Eukaryotic Initiation Factor-2 , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Phosphorylation , Polyribosomes/metabolism , Protein Biosynthesis
2.
Front Plant Sci ; 11: 936, 2020.
Article in English | MEDLINE | ID: mdl-32655610

ABSTRACT

A mechanism based on reversible phosphorylation of the α-subunit of eukaryotic initiation factor 2 (eIF2α) has been confirmed as an important regulatory pathway for the inhibition of protein synthesis in mammalian and yeast cells, while plants constitute the significant exception. We studied the induction of TaeIF2α phosphorylation in germinated wheat (Triticum aestivum) embryos subjected to different adverse conditions. Data confirmed that formation of TaeIF2(αP) was not a general response, as no phosphorylation was observed under salt, oxidative, or heat stress. Nevertheless, treatment by salicylic acid, UV-light, cold shock and histidinol did induce phosphorylation of TaeIF2α of wheat as has been established previously for AteIF2α in Arabidopsis (Arabidopsis thaliana). The influence of TaeIF2α phosphorylation on translation of reporter mRNA with different 5'-untranslated regions (5'UTRs) was studied in wheat germ cell-free system (WG-CFS), in which TaeIF2α was first phosphorylated either by heterologous recombinant human protein kinase, HsPKR (activated by double-stranded (ds)RNA), or by endogenous protein kinase TaGCN2 (activated by histidinol). Pretreatment of WG-CFS with HsPKR in the presence of dsRNA or with histidinol resulted in intense phosphorylation of TaeIF2α; however, the translation levels of all tested mRNAs decreased by only 10-15% and remained relatively high. In addition, factor OceIF2 from rabbit (Oryctolagus cuniculus) bound GDP much more strongly than the homologous factor TaeIF2 from wheat germ. Furthermore, factor OceIF2B was able to stimulate guanine nucleotide exchange (GDP→GTP) on OceIF2 but had no effect on a similar exchange on TaeIF2. These results suggest that the mechanism of stress response via eIF2α phosphorylation is not identical in all eukaryotes, and further research is required to find and study in detail new plant-specific mechanisms that may inhibit overall protein synthesis in plants under stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...