Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
ACS Macro Lett ; 12(11): 1503-1509, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37879104

ABSTRACT

We investigate the dynamics of polymers grafted to spherical nanoparticles in solution using hybrid molecular dynamics simulations with a coarse-grained solvent modeled via the multiparticle collision dynamics algorithm. The mean-square displacements of monomers near the surface of the nanoparticle exhibit a plateau on intermediate time scales, indicating confined dynamics reminiscent of those reported in neutron spin-echo experiments. The confined dynamics vanish beyond a specific radial distance from the nanoparticle surface that depends on the polymer grafting density. We show that this dynamical confinement transition follows theoretical predictions for the critical distance associated with the structural transition from confined to semidilute brush regimes. These findings suggest the existence of a hitherto unreported dynamic length scale connected with theoretically predicted static fluctuations in spherical polymer brushes and provide new insights into recent experimental observations.

2.
Langmuir ; 39(22): 7852-7862, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37204835

ABSTRACT

Soft materials possessing tunable rheological properties are desirable in applications ranging from 3D printing to biological scaffolds. Here, we use a telechelic, triblock copolymer polystyrene-b-poly(ethylene oxide)-b-polystyrene (SEOS) to form elastic networks of polymer-linked droplets in cyclohexane-in-water emulsions. The SEOS endblocks partition into the dispersed cyclohexane droplets while the midblocks remain in the aqueous continuous phase, resulting in each chain taking on either a looping or bridging conformation. By controlling the fraction of chains that form bridges, we tune the linear elasticity of the emulsions and generate a finite yield stress. Polymers with higher molecular weight (Mw) endblocks form stronger interdroplet connections and display a higher bridging density. Beyond modifying the linear rheology, the telechelic, triblock copolymers also alter the yielding behavior and processability of the linked emulsions. We examine the yield transition of these polymer-linked emulsions through large amplitude oscillatory shear (LAOS) and probe the emulsion structure through confocal microscopy, concluding that polymers that more readily form bridges generate a strongly percolated network, whereas those that are less prone to form bridges tend to produce networks composed of weakly linked clusters of droplets. When yielded, the emulsions consisting of linked clusters break apart into individual clusters that can rearrange upon the application of further shear. By contrast, when the systems containing a more homogeneous bridging density are yielded, the system remains percolated but with reduced elasticity and bridging density. The demonstrated ability of telechelic triblock copolymers to tune not only the linear viscoelasticity of complex fluids but also their nonlinear yield transition enables the use of these polymers as versatile and robust rheological modifiers. We expect our findings to therefore aid the design of the next generation of complex fluids and soft materials.

3.
ACS Macro Lett ; 11(7): 854-860, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35758769

ABSTRACT

We investigate the structure and dynamics of unentangled semidilute solutions of sodium polystyrenesulfonate (NaPSS) using small-angle neutron scattering (SANS) and neutron spin-echo (NSE) spectroscopy. The effects of electrostatic interactions and chain structure are examined as a function of ionic strength and polymer concentration, respectively. The SANS profiles exhibit a characteristic structural peak, signature of polyelectrolyte solutions, that can be fit with a combination of a semiflexible chain with excluded volume interactions form factor and a polymer reference interaction site model (PRISM) structure factor. We confirm that electrostatic interactions vary with ionic strength across solutions with similar geometries. The segmental relaxations from NSE deviate from theoretical predictions from Zimm and exhibit two scaling behaviors, with the crossover between the two regimes taking place around the characteristic structural peak. The chain dynamics are suppressed across the length scale of the correlation blob, and inversely related to the structure factor. These observations suggest that the highly correlated nature of polyelectrolytes presents an additional energy barrier that leads to de Gennes narrowing behavior.


Subject(s)
Polymers , Ions , Polyelectrolytes , Polymers/pharmacology , Scattering, Small Angle , Static Electricity
4.
Soft Matter ; 17(17): 4517-4524, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33710229

ABSTRACT

Microcapsules are commonly used in applications ranging from therapeutics to personal care products due to their ability to deliver encapsulated species through their porous shells. Here, we demonstrate a simple and scalable approach to fabricate microcapsules with porous shells by interfacial complexation of cellulose nanofibrils and oleylamine, and investigate the rheological properties of suspensions of the resulting microcapsules. The suspensions of neat capsules are viscous liquids whose viscosity increases with volume fraction according to a modified Kreiger-Dougherty relation with a maximum packing fraction of 0.74 and an intrinsic viscosity of 4.1. When polyacrylic acid (PAA) is added to the internal phase of the microcapsules, however, the suspensions become elastic and display yield stresses with power-law dependencies on capsule volume fraction and PAA concentration. The elasticity appears to originate from associative microcapsule interactions induced by PAA that is contained within and incorporated into the microcapsule shell. These results demonstrate that it is possible to tune the rheological properties of microcapsule suspensions by changing only the composition of the internal phase, thereby providing a novel method to tailor complex fluid rheology.


Subject(s)
Cellulose , Capsules , Rheology , Suspensions , Viscosity
5.
ACS Nano ; 15(5): 8192-8203, 2021 May 25.
Article in English | MEDLINE | ID: mdl-33729764

ABSTRACT

Nanostructured materials with precisely defined and water-bicontinuous 1-nm-scale pores are highly sought after as advanced materials for next-generation nanofiltration membranes. While several self-assembled systems appear to satisfy this need, straightforward fabrication of such materials as submicron films with high-fidelity retention of their ordered nanostructure represents a nontrivial challenge. We report the development of a lyotropic liquid crystal mesophase that addresses the aforementioned issue. Films as thin as ∼200 nm are prepared on conventional support membranes using solution-based methods. Within these films, the system is composed of a hexagonally ordered array of ∼3 nm diameter cylinders of cross-linked polymer, embedded in an aqueous medium. The cylinders are uniformly oriented in the plane of the film, providing a transport-limiting dimension of ∼1 nm, associated with the space between the outer surfaces of nearest-neighbor cylinders. These membranes exhibit molecular weight cutoffs of ∼300 Da for organic solutes and are effective in rejecting dissolved salts, and in particular, divalent species, while exhibiting water permeabilities that rival or exceed current state-of-the-art commercial nanofiltration membranes. These materials have the ability to address a broad range of nanofiltration applications, while structure-property considerations suggest several avenues for potential performance improvements.

6.
Langmuir ; 36(31): 9153-9159, 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32678607

ABSTRACT

We investigate the mobility of polystyrene particles ranging from 100 to 790 nm in diameter in dilute and semidilute sodium polystyrene sulfonate (NaPSS) solutions using fluorescence microscopy. We tune the polymer conformations by varying the ionic strength of the solution. The nanoparticle mean-squared displacements evolve linearly with time at all time scales, indicating Fickian diffusive dynamics. In solutions of high ionic strength, chains adopt a random walk conformation and particle dynamics couple to the bulk zero-shear rate viscosity, according to the Stokes-Einstein picture. In solutions of low ionic strength, however, particle dynamics nonmonotonically deviate from bulk predictions as polymer concentration increases and are not accurately predicted by the available models. These nonmonotonic dynamics directly correlate with the non-Gaussianity in distributions of particle displacements, suggesting the emergence of a local confining length scale as polyelectrolyte concentration increases.

7.
Soft Matter ; 16(10): 2574-2580, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32083258

ABSTRACT

The rheological properties of emulsions are of considerable importance in a diverse range of scenarios. Here we describe a superposition of the effects of droplet elasticity and volume fraction on the dynamics of emulsions. The superposition is governed by physical interactions between droplets, and provides a new mechanism for modifying the flow behavior of emulsions, by controlling the elasticity of the dispersed phase. We investigate the properties of suspensions of emulsified wormlike micelles (WLM). Dense suspensions of the emulsified WLM droplets exhibit thermally responsive properties in which the viscoelastic moduli decrease by an order of magnitude over a temperature range of 0 °C to 25 °C. Surprisingly, the dependence of modulus on volume fraction is independent of droplet stiffness. Instead, the emulsion modulus scales as a power-law with volume fraction with a constant exponent across all temperatures even as the droplet properties change from elastic to viscous. Nevertheless, the underlying droplet dynamics depend strongly on temperature. From stress relaxation experiments, we quantify droplet dynamics across the cage breaking time scale below which the droplets are locally caged by neighbors and above which the droplets escape their cages to fully relax. For elastic droplets and high volume fractions, droplets relax less stress on short time scales and the terminal relaxations are slower than for viscous droplets and lower volume fractions. Characteristic measures of the short and long-time dynamics are highly correlated for variations in both temperature and emulsion concentration, suggesting that thermal and volume fraction effects represent independent parameters to control emulsion properties.

8.
J Chem Phys ; 151(19): 194501, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31757151

ABSTRACT

The transport of small penetrants through disordered materials with glassy dynamics is encountered in applications ranging from drug delivery to chemical separations. Nonetheless, understanding the influence of the matrix structure and fluctuations on penetrant motions remains a persistent challenge. Here, we use event-driven molecular dynamics to investigate the transport of small, hard-sphere tracers embedded in matrices of square-well particles. Short-range attractions between matrix particles give rise to reentrant dynamics in the supercooled regime, in which the liquid's relaxation time increases dramatically upon heating or cooling. Heating results in a "repulsive" supercooled liquid where relaxations are frustrated by steric interactions between particles, whereas cooling produces an "attractive" liquid in which relaxations are hindered by long-lived interparticle bonds. Further cooling or heating, or compression, of the supercooled liquids results in the formation of distinct glasses. Our study reveals that tracer transport in these supercooled liquids and glasses is influenced by the matrix structure and dynamics. The relative importance of each factor varies between matrices and is examined in detail by analyzing particle mean-square displacements, caging behavior, and trajectories sampled from the isoconfigurational ensemble. We identify features of tracer dynamics that reveal the spatial and temporal heterogeneity of the matrices and show that matrix arrest is insufficient to localize tracers.

9.
J Phys Chem Lett ; 10(8): 1784-1789, 2019 Apr 18.
Article in English | MEDLINE | ID: mdl-30916569

ABSTRACT

We investigate the transport and localization of tracer probes in a glassy matrix as a function of relative size using dynamic X-ray scattering experiments and molecular dynamics simulations. The quiescent relaxations of tracer particles evolve with increasing waiting time, tw. The corresponding relaxation times increase exponentially at small tw and then transition to a power-law behavior at longer tw. As tracer size decreases, the aging behavior weakens and the particles become less localized within the matrix until they delocalize at a critical size ratio δ0 ≈ 0.38. Localization does not vary with sample age even as the relaxations slow by approximately an order of magnitude, suggesting that matrix structure controls tracer localization.

10.
ACS Macro Lett ; 8(8): 917-922, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-35619487

ABSTRACT

We examine the dynamics of silica particles grafted with high molecular weight polystyrene suspended in semidilute solutions of chemically similar linear polymer using X-ray photon correlation spectroscopy. The particle dynamics decouple from the bulk viscosity despite their large hydrodynamic size and instead experience an effective viscosity that depends on the molecular weight of the free polymer chains. Unlike for hard-sphere nanoparticles in semidilute polymer solutions, the diffusivities of the polymer-grafted nanoparticles do not collapse onto a master curve solely as a function of normalized length scales. Instead, the diffusivities can be collapsed across two orders of magnitude in free polymer molecular weight and concentration and one order of magnitude in grafted molecular weight by incorporating the ratio of free to grafted polymer molecular weights. These results suggest that the soft interaction potential between polymer-grafted nanoparticles and free polymer allows polymer-grafted nanoparticles to diffuse faster than predicted based on bulk rheology and modifies the coupling between grafted particle dynamics and the relaxations of the surrounding free polymer.

11.
Soft Matter ; 15(6): 1260-1268, 2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30444237

ABSTRACT

The hierarchical structure and dynamics of polymer solutions control the transport of nanoparticles (NPs) through them. Here, we perform multi-particle collision dynamics simulations of solutions of semiflexible polymer chains with tunable persistence length lp to investigate the effect of chain stiffness on NP transport. The NPs exhibit two distinct dynamical regimes - subdiffusion on short time scales and diffusion on long time scales. The long-time NP diffusivities are compared with predictions from the Stokes-Einstein relation (SER), mode-coupling theory (MCT), and a recent polymer coupling theory (PCT). Increasing deviations from the SER as the polymer chains become more rigid (i.e. as lp increases) indicate that the NP motions become decoupled from the bulk viscosity of the polymer solution. Likewise, polymer stiffness leads to deviations from PCT, which was developed for fully flexible chains. Independent of lp, however, the long-time diffusion behavior is well-described by MCT, particularly at high polymer concentration. We also observed that the short-time subdiffusive dynamics are strongly dependent on polymer flexibility. As lp is increased, the NP dynamics become more subdiffusive and decouple from the dynamics of the polymer chain center-of-mass. We posit that these effects are due to differences in the segmental mobility of the semiflexible chains.

12.
Soft Matter ; 14(29): 6102-6108, 2018 Jul 25.
Article in English | MEDLINE | ID: mdl-29998246

ABSTRACT

We determine the conformational change of polystyrene chains grafted to silica nanoparticles dispersed in deuterated cyclohexane using small-angle neutron scattering. The cyclohexane/polystyrene system exhibits an upper-critical solution temperature below which the system phase separates. By grafting the polystyrene chains to a nano-sized spherical silica particle, we observe a significant suppression in the Θ-temperature, decreasing from ≈38 °C for free polystyrene chains in d12-cyclohexane to ≈34 °C for the polystyrene-grafted nanoparticles. Above this temperature, the grafted chains are swollen and extended from the particle surface, resulting in well-dispersed grafted nanoparticles. Below this temperature, the grafted chains fully expel the solvent and collapse on the particle surface, destabilizing the nanoparticle suspension and leading to aggregation. We attribute the suppression of the Θ-temperature to a competition between entropic and enthalpic energies arising from the structure of the polymer-grafted nanoparticle in which the enthalpic terms appear to dominate.

13.
J Phys Chem Lett ; 9(11): 3008-3013, 2018 Jun 07.
Article in English | MEDLINE | ID: mdl-29763547

ABSTRACT

Dynamic coupling of small penetrants to slow, cooperative relaxations within crowded cells, supercooled liquids, and polymer matrices has broad consequences for applications ranging from drug delivery to nanocomposite processing. Interactions between the constituents of these and other disordered media alter the cooperative relaxations, but their effect on penetrant dynamics remains incompletely understood. We use molecular dynamics simulations to show that the motions of hard-sphere tracer particles probe differences in local structure and cooperative relaxation processes in attractive and repulsive glassy liquid matrices with equal bulk packing fractions and long-time diffusivities. Coupling of the tracer dynamics to collective relaxations in each matrix affects the shape of tracer trajectories, which are fractal within the repulsive matrix and more compact in the attractive. These results reveal that the structure of relaxations controls penetrant transport and dispersion in cooperatively relaxing systems and provide insight into dynamical heterogeneity within glassy liquids.

14.
Annu Rev Chem Biomol Eng ; 9: 175-200, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29561646

ABSTRACT

Bacteria overwhelmingly live in geometrically confined habitats that feature small pores or cavities, narrow channels, or nearby interfaces. Fluid flows through these confined habitats are ubiquitous in both natural and artificial environments colonized by bacteria. Moreover, these flows occur on time and length scales comparable to those associated with motility of bacteria and with the formation and growth of biofilms, which are surface-associated communities that house the vast majority of bacteria to protect them from host and environmental stresses. This review describes the emerging understanding of how flow near surfaces and within channels and pores alters physical processes that control how bacteria disperse, attach to surfaces, and form biofilms. This understanding will inform the development and deployment of technologies for drug delivery, water treatment, and antifouling coatings and guide the structuring of bacterial consortia for production of chemicals and pharmaceuticals.


Subject(s)
Bacteria/metabolism , Bacterial Physiological Phenomena , Biofilms/growth & development , Bacteria/growth & development , Bacterial Adhesion , Escherichia coli/physiology , Quorum Sensing , Surface Properties
15.
NPJ Microgravity ; 3: 21, 2017.
Article in English | MEDLINE | ID: mdl-28868354

ABSTRACT

Research tasks in microgravity include monitoring the dynamics of constituents of varying size and mobility in processes such as aggregation, phase separation, or self-assembly. We use differential dynamic microscopy, a method readily implemented with equipment available on the International Space Station, to simultaneously resolve the dynamics of particles of radius 50 nm and 1 µm in bidisperse aqueous suspensions. Whereas traditional dynamic light scattering fails to detect a signal from the larger particles at low concentrations, differential dynamic microscopy exhibits enhanced sensitivity in these conditions by accessing smaller wavevectors where scattering from the large particles is stronger. Interference patterns due to scattering from the large particles induce non-monotonic decay of the amplitude of the dynamic correlation function with the wavevector. We show that the position of the resulting minimum contains information on the vertical position of the particles. Together with the simple instrumental requirements, the enhanced sensitivity of differential dynamic microscopy makes it an appealing alternative to dynamic light scattering to characterize samples with complex dynamics.

16.
Analyst ; 142(1): 55-64, 2016 12 19.
Article in English | MEDLINE | ID: mdl-27704069

ABSTRACT

Using microscopy and image analysis, we characterize binding of filamentous viral nanoparticles to a fibrous affinity matrix as models for reporter capture in a lateral flow assay (LFA). M13 bacteriophage (M13) displaying an in vivo-biotinylated peptide (AviTag) genetically fused to the M13 tail protein p3 are functionalized with fluorescent labels. We functionalize glass fiber LFA membranes with antibodies to M13, which primarily capture M13 on the major p8 coat proteins, or with avidin, which captures M13 at the biotin-functionalized tail, and compare orientational modes of reporter capture for the side- versus tip-binding recognition interactions. The number of captured M13 is greater for side-binding than for tip-binding, as expected from the number of recognition groups. Whereas two-thirds of side-bound M13 captured by an anti-M13 antibody bind immediately after colliding with the membrane, tip-bound M13 prominently exhibit three additional orientational modes that require M13 to reorient to enable binding. These results are consistent with the idea that the elongated M13 shape couples with the complex flow field in an open and disordered fibrous LFA membrane to enhance capture.


Subject(s)
Biological Assay/methods , Nanoparticles , Bacteriophage M13/metabolism , Biotinylation , Peptides/metabolism , Viral Proteins/metabolism
17.
Article in English | MEDLINE | ID: mdl-26565277

ABSTRACT

Nanoparticle dynamics impact a wide range of biological transport processes and applications in nanomedicine and natural resource engineering. Differential dynamic microscopy (DDM) was recently developed to quantify the dynamics of submicron particles in solutions from fluctuations of intensity in optical micrographs. Differential dynamic microscopy is well established for monodisperse particle populations, but has not been applied to solutions containing weakly scattering polydisperse biological nanoparticles. Here we use bright-field DDM (BDDM) to measure the dynamics of protein-rich liquid clusters, whose size ranges from tens to hundreds of nanometers and whose total volume fraction is less than 10(-5). With solutions of two proteins, hemoglobin A and lysozyme, we evaluate the cluster diffusion coefficients from the dependence of the diffusive relaxation time on the scattering wave vector. We establish that for weakly scattering populations, an optimal thickness of the sample chamber exists at which the BDDM signal is maximized at the smallest sample volume. The average cluster diffusion coefficient measured using BDDM is consistently lower than that obtained from dynamic light scattering at a scattering angle of 90°. This apparent discrepancy is due to Mie scattering from the polydisperse cluster population, in which larger clusters preferentially scatter more light in the forward direction.


Subject(s)
Hemoglobin A/chemistry , Microscopy/methods , Muramidase/chemistry , Diffusion , Dynamic Light Scattering , Humans , Optical Imaging/methods , Solutions , Viscosity , Water/chemistry
18.
ACS Macro Lett ; 4(10): 1169-1173, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-35614800

ABSTRACT

The mobility of polystyrene nanoparticles ranging in diameter from 300 nm to 2 µm was measured in dilute and semidilute solutions of partially hydrolyzed polyacrylamide. In this model system, the ratio of particle to polymer size controls the long-time diffusivity of nanoparticles. The particle dynamics transition from subdiffusive on short time scales to Fickian on long time scales, qualitatively similar to predictions for polymer dynamics using a Rouse model. The diffusivities extracted from the long-time Fickian regime, however, are larger than those predicted by the Stokes-Einstein equation and the bulk zero-shear viscosity and moreover do not collapse according to hydrodynamic models. The size-dependent deviations of the long-time particle diffusivities derive instead from the coupling between the dynamics of the particle and the polymer over the length scale of the particle. Although the long-time diffusivities collapse according to predictions, deviations of the short-time scaling exponents and the crossover time between subdiffusive and Fickian dynamics indicate that the particles are only partially coupled to the relaxation modes of the polymer.

SELECTION OF CITATIONS
SEARCH DETAIL
...